Extreme Value Limit Theory without Extreme Value Distributions

O'Brien's theory for maxima of stationary sequences (Draft, version 1.0)

LABEX MME - DII CHAIRE INTERNATIONALE Paris, January 8th, 2014

> Adam Jakubowski Nicolaus Copernicus University Toruń, Poland

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Content

- I. An overview.
- II. O'Brien's theory:
 - Phantom distribution function and criteria for its existence.
 - Extremal index of a stationary sequence.
- III. A multi-sequence method for multivariate extremes.
- IV. Calculating limits for maxima of random fields. Phantom distribution function and extremal index for stationary random fields.
- V. An asymptotic (r 1)-dependent representation for *r*-th order statistics from a stationary sequence. Understanding joint distributions of order statistics.
- VI. Extremes on $\mathbb{D}([0, 1])$.

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Limit theorems for extrema due to Gnedenko (with complements due to de Haan)

- $\{X_j\}_{j\in\mathbb{N}}$ an i.i.d. sequence of random variables, $M_n = \max_{1 \le j \le n} X_j, n \in \mathbb{N}.$
- Problem: find *a_n* > 0, *b_n* ∈ ℝ and a non-degenerate distribution function *H* such that

(*)
$$\lim_{n\to\infty} P((M_n-b_n)/a_n \leq x) = H(x), \quad x \in \mathbb{R}$$

- Question I: identify possible types of limiting distributions (3 types or one-parameter family indexed with γ ∈ ℝ).
- Question II: describe when a particular distribution F of X_j leads to the given limiting H ("domains of attraction").
- Question III: for given *F* and *H* determine asymptotically *a_n* and *b_n*.
- Question IV: find a rate of convergence in (*).

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Comments on the extreme value limit theory

- (+) Parallels the limit theory for sums.
- (±) The exists a variety of limiting laws with quite different properties.
- (-) Limiting laws in general do not scale: if X_j's are standard normal and

$$\lim_{n\to\infty} P((M_n-b_n)/a_n\leqslant x)=\exp(-e^{-x}),$$

and if $X'_j \sim \mathcal{N}(0, \sigma^2)$, where $\sigma^2 \neq 1$, then $\lim_{n\to\infty} P((M'_n - b_n)/a_n \leq x) = \text{either 0 or 1}.$

- (-) The last property makes difficult deducing limit properties on the base of conditional distributions.
- (-) In many practical tasks only a single sequence {*v_n*} is of interest. For example:
 - \circ For given α close to 1 find

$$\lim_{n\to\infty} P(M_n \leqslant v_n) = \alpha \in (0,1).$$

 \circ Find exact asymptotics (large deviations) of

$$P(M_n \ge v_n) \rightarrow 0.$$

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

O'Brien's theory for maxima of stationary sequences (1974, 1987)

Basic observation. If {X_j} are i.i.d. and X_j ~ F, then for arbitrary sequence {v_n}

$$P(M_n \leqslant v_n) = F(v_n)^n = \exp\left(-n(1-F(v_n))\right) + o(1).$$

O'Brien's (1974) observation: Given α ∈ (0, 1), it is possible to find constants {v_n = v_n(α)} such that

$$P(M_n \leq v_n) = F(v_n)^n \to \alpha$$
, as $n \to \infty$,

if, and only if,

$$F(F_*-) = 1$$
 and $\lim_{x \to F_*-} \frac{1 - F(x)}{1 - F(x-)} = 1$,

where

$$F_* = \sup\{x : F(x) < 1\}.$$

• If for some $\alpha \in (0, 1)$ then for every $\alpha \in (0, 1)$!

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

 By definition, a distribution function G is regular (in the sense of O'Brien) if

$$G(G_*-) = 1$$
 and $\lim_{x \to G_*-} \frac{1 - G(x)}{1 - G(x-)} = 1.$

- Now suppose that {*X_j*} is a stationary sequence of random variables, with marginal distribution *F*.
- Following O'Brien (1987) we call any distribution function *G* satisfying

 $(*) \qquad P(M_n \leqslant v_n) - G^n(v_n) \to 0, \text{ as } n \to \infty,$

for all sequences $\{v_n\}$, a phantom distribution function for $\{X_i\}$.

• Clearly (*) is equivalent to

$$sup_{v}|P(M_{n} \leq v) - G^{n}(v)| \rightarrow 0, \text{ as } n \rightarrow \infty.$$

• G is not uniquely determined!

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

- O'Brien (1987) gave sufficient condition for the existence of a regular phantom distribution function.
- In J. (1991) and J. (1993) necessary and sufficient conditions were given.

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Theorem

Let $\{X_i\}$ be stationary. The following are equivalent:

- 1 The sequence $\{X_j\}$ admits a regular phantom distribution function.
- 2 There exists a sequence $\{v_n\}$ and $\alpha \in (0, 1)$ such that

$$P(M_n \leq v_n) \rightarrow \alpha$$

and the following Condition $B_{\infty}(v_n)$ holds: as $n \to \infty$

 $\sup_{p,q\in\mathbb{N}} \left| P(M_{p+q} \leqslant v_n) - P(M_p \leqslant v_n) P(M_q \leqslant v_n) \right| \to 0,$

3 There exists α ∈ (0, 1) such that for some dense subset Q ⊂ R⁺

$$P(M_{[nt]} \leq v_n) \rightarrow \alpha^t, t \in \mathbb{Q}.$$

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

- In fact, given α ∈ (0, 1) and {v_n} we can construct a regular phantom distribution function *G* for {X_j}.
- First, we can replace $\{v_n\}$ with

$$v_n^* = \begin{cases} \max\{v_k : 1 \le k \le n, v_k < F_*\} & \text{if } \neq \emptyset, \\ \inf\{v_n : n \in N\} & \text{otherwise,} \end{cases}$$

which is nondecreasing.

• Then one can define

$$G(x) = \begin{cases} 0, & \text{if } x < v_1^*, \\ \alpha^{1/n}, & \text{if } v_n^* \leq x < v_{n+1}^*, \\ 1, & \text{if } x \ge \sup\{v_n^* : n \in N\}. \end{cases}$$

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

- How to check $\lim_{n\to\infty} P(M_n \leq v_n) = \alpha$?
- By mixing, for some $k_n \to \infty$,

$$P(M_n \leq v_n) = \left(P(M_{[n/k_n]} \leq v_n) \right)^{k_n} + o(1),$$

= $\exp\left(-k_n P(M_{[n/k_n]} > v_n) \right) + o(1)$

 O'Brien (1987) gives conditions for k_n which allow to write

$$=\exp\left(-nP(X_0>v_n,M_{[n/k_n]-1}\leqslant v_n)\right)+o(1).$$

• This extends earlier results of Newell (1964) for *m*-dependent sequences and many results for Markov chains (see e.g. Chernick et al. (1991)). EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Let us observe that in O'Brien's formula (writing r_n for [n/k_n])

$$P(X_0 > v_n, M_{r_n-1} \leqslant v_n) = P(M_{r_n-1} \leqslant v_n) - P(M_{r_n} \leqslant v_n)$$

• This means that on the one hand

$$P(M_n \leqslant v_n) = \exp\left(-k_n P(M_{r_n} > v_n)\right) + o(1),$$

while on the other hand

$$P(M_n \leqslant v_n) = \exp\left(-nP(X_0 > v_n, M_{r_n-1} \leqslant v_n)\right) + o(1)^{\text{Managing clusters}}_{\text{fbig values}}$$

$$= \exp\left(-k_n\left(r_n\left(P(M_{r_n-1} \leqslant v_n) - P(M_{r_n} \leqslant v_n)\right)\right)\right) + o(1)^{\text{lon-stationarity}}_{\text{Bibliography}}$$

• Hence it must be

$$k_n \Big(P(M_{r_n} < v_n) - r_n \Big(P(M_{r_n-1} \leqslant v_n) - P(M_{r_n} \leqslant v_n) \Big) \Big) \to 0$$

Adam Jakubowski

EVLT without EVD

Limit theorems for extrema

O'Brien's theory

11

Lemma (J. 1997, also BJMW 2011, Balan & Louichi 2010

Let $Z_1, Z_2, ...$ be strictly stationary random vectors. Set $T_0 = 0, T_k = \sum_{j=1}^k Z_j, k \in \mathbb{N}$. If $0 \notin U$, then for every $n \in \mathbb{N}$ and every $m \in \mathbb{N}, m \leq n$, the following inequality holds:

$$\left| P(T_n \in U) - n(P(T_{m+1} \in U) - P(T_m \in U)) \right|$$

$$\leqslant \quad 3mP(Z_1 \neq 0) + 2 \sum_{\substack{1 \leq i < j \leq n \\ j-i > m}} P(Z_j \neq 0, Z_j \neq 0).$$

Set
$$n = r_n$$
, $Z_k = I\{X_k > v_n\}$, $U = (0, +\infty)$, to get
 $\left| P(M_{r_n} > v_n) - r_n(P(M_{m+1} > v_n) - P(M_m > v_n)) \right|$
 $= \left| P(M_{r_n} > v_n) - r_n(P(X_0 > v_n, M_m \leqslant v_n)) \right|$
 $\leqslant 3mP(X_1 > v_n) + 2\sum_{\substack{1 \le i < j \le n \\ j - i > m}} P(X_j > v_n, X_j > v_n).$

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Corollary

If $k_n \to \infty$ and m_n are such that

$$\lim_{n\to\infty} k_n m_n P(X_1 > v_n) = 0,$$
$$\lim_{n\to\infty} k_n \sum_{\substack{1 \le i < j \le [n/k_n] \\ j-i > m_n}} P(X_i > v_n, X_j > v_n) = 0,$$

(plus mixing into k_n blocks) then

$$P(M_n \leqslant v_n) = \exp\left(-nP(X_0 > v_n, M_{m_n} \leqslant v_n)\right) + o(1).$$

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Corollary

If $k_n \to \infty$ is such that

$$P(M_n \leq v_n) = \left(P(M_{[n/k_n]} \leq v_n)\right)^{k_n} + o(1),$$

$$\lim_{n\to\infty}k_nP(X_1>v_n) = 0$$

$$\lim_{m\to\infty}\limsup_{n\to\infty} k_n \sum_{\substack{1\leqslant i < j\leqslant [n/k_n]\\ i-i>m}} P(X_i > v_n, X_j > v_n) = 0$$

if for each $m \in \mathbb{N}$ there exists

$$\lim_{n\to\infty} nP(X_0 > v_n, M_m \leqslant v_n) = \beta(m),$$

then

$$\lim_{n\to\infty} P(M_n \leqslant v_n) = \exp\left(-\lim_{m\to\infty}\beta(m)\right).$$

EVLT without EVD

Adam Jakubowski

Extremal index due to Leadbetter(1983), also Loynes(1965), O'Brien (1974)

 The extremal index of a stationary sequence {X_j} is a number θ ∈ (0, 1), such that for all τ > 0,

(*)
$$P(M_n \leq u_n(\tau)) \rightarrow e^{-\theta \tau}$$

whenever

(**)
$$nP(X_1 > u_n(\tau)) \rightarrow \tau.$$

• Let $\{\widehat{X}_j\}$ be the sequence "associated" to $\{X_n\}$, i.e. \widehat{X}_j 's are i.i.d. with the same marginal distributions as $X_j : \mathcal{L}(\widehat{X}_j) = \mathcal{L}(X_j)$. Then (**) means $P(\widehat{M}_n \leq u_n(\tau)) \rightarrow e^{-\tau}$ and (*) and (**) imply

$$P(M_n \leq u_n) - P(\widehat{M}_n \leq u_n)^{\theta} \to 0,$$

at least for sequences $u_n = u_n(\tau)$ defined by (**).

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity Bibliography

Extremal index due to Leadbetter

In fact, Leadbetter (1983) proved that if $\theta > 0$ then the relation

$$P(M_n \leq u_n) - P(\widehat{M}_n \leq u_n)^{\theta} \to 0,$$

holds for all sequences $\{u_n\}$. Hence $G(x) = F^{\theta}(x)$ is a phantom distribution function for $\{X_i\}$.

Theorem

Let $\{X_j\}$ be a stationary sequence. Then $\{X_j\}$ has the extremal index $\theta > 0$ if and only if there exists a sequence $\{v_n\}$ such that Condition $B_{\infty}(v_n)$ holds and for some $\alpha, \hat{\alpha} \in (0, 1)$

$$P(M_n \leqslant v_n) \rightarrow \alpha,$$

$$nP(X_1 > v_n) \rightarrow -\log \widehat{\alpha}.$$

In such a case

$$\theta = \frac{\log \alpha}{\log \widehat{\alpha}}.$$

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Bibliography

16

A standard example

• Let *Y*₁, *Y*₂,... be an i.i.d. sequence with regular distribution function *F*. Define

$$X_j = Y_j \lor Y_{j+1}, \ j \in \mathbb{N}.$$

- Then {X_j} is a stationary and 1-dependent sequence with extremal index θ = 1/2.
- This is because

$$P(\max_{1 \leq j \leq n} X_j \leq v_n) = P(\max_{1 \leq j \leq n+1} Y_j \leq v_n)$$
$$= F(v_n)^{n+1} = \exp\left(-(n+1)(1-F(v_n))\right) + o(1),$$

while

$$nP(X_1 > v_n) \sim 2nP(Y_1 > v_n) = 2n(1 - F(v_n)).$$

 A simple task: given a number θ ∈ (0, 1) find a stationary sequence with the extremal index θ.

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity Bibliography

A model for order statistics

- Let $\beta_1, \beta_2, \dots, \beta_r \ge 0$ be such that $\sum_{q=1}^r \beta_q = 1$, and let *G* be a (regular) distribution function.
- For each $1 \leq q \leq r$, let $\{\tilde{Y}_{qj}\}_{j \in \mathbb{N}}$ be independent, identically distributed with

$$ilde{Y}_{qj}\sim G^{eta_q}$$
 .

- Let sequences $\{\tilde{Y}_{1j}\}_{j\in\mathbb{N}}, \{\tilde{Y}_{2j}\}_{j\in\mathbb{N}}, \dots, \{\tilde{Y}_{rj}\}_{j\in\mathbb{N}}$ be mutually independent.
- Define a new, (r 1) dependent sequence:

$$\begin{split} \tilde{X}_{j} &= \tilde{Y}_{1j} \\ & \vee (\tilde{Y}_{2j} \vee \tilde{Y}_{2,j+1}) \\ & \vee (\tilde{Y}_{3j} \vee \tilde{Y}_{3,j+1} \vee \tilde{Y}_{3,j+2}) \\ & \vdots \\ & \vee (\tilde{Y}_{rj} \vee \tilde{Y}_{r,j+1} \vee \ldots \vee \tilde{Y}_{r,j+r-1}). \end{split}$$

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

A model for order statistics

- Let \$\tilde{M}_n^{(1)}\$, \$\tilde{M}_n^{(2)}\$, \$\dots\$, \$\tilde{M}_n^{(r)}\$ be the highest order statistics for \$\tilde{X}_1\$, \$\tilde{X}_2\$, \$\dots\$, \$\tilde{X}_n\$ defined above.
- If *v_n* is such that

$$P(\tilde{M}_n^{(1)} \leqslant v_n) \longrightarrow \alpha_1, \text{ as } n \to \infty,$$

where $\alpha_1 \in (0, 1)$,

• then also for $q = 2, 3, \ldots, r$

$$P(ilde{M}_n^{(q)} \leqslant v_n) \longrightarrow lpha_q, \text{ as } n o \infty,$$

where α_q are functions of α_1 and $\beta_1, \beta_2, \ldots, \beta_r$.

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Non-stationarity - some motivating examples

R. Ballerini and S. Resnick, Records from improving populations, *J. Appl. Probab.*, 22 (1985) 487–502.

{*X_j*} - i.i.d. sequence, *F_{X_j}* - continuous, *Y_j* = *X_j* + $c \cdot j$. What are the records of a nonstationary sequence {*Y_j*}? If *F*(*x*) = exp(-exp(-(x - a)/b)), then

$$P(Y_j \leqslant x) = P(X_j \leqslant x - c \cdot j) = F(x)^{e^{c \cdot j/b}}.$$

A. Kukush, Y. Chernikov and D. Pfeifer, Maximum Likelihood Estimators in a Statistical Model of Natural Catastrophe Claims with Trend, *Extremes*, 7 (2004) 309–336.

 $\{X_j\}$ - independent, $X_j \sim F^{\gamma_j}$, where $\gamma_j = \gamma^{j-1}$ for some $\gamma > 1$.

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Non-stationarity - some motivating examples

- Common denominator: non-stationary model built on independent variables, with distributions designed according to some rule.
- Problem: What are the reasonable rules?

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Asymptotic Independent Representation for Maxima

- Let $\{X_j\}_{k \in \mathbb{N}}$ be an arbitrary sequence of random variables. Define as before $M_n = \max_{1 \le j \le n} X_j$.

$$\sup_{x\in\mathbb{R}^1} \left| P(M_n \leqslant x) - P(\tilde{M}_n \leqslant x) \right| \longrightarrow 0, \text{ as } n \to \infty,$$

where \tilde{M}_n is the *n*-th partial maximum of X_j 's.

Then {X̃_j} is said to provide an asymptotic independent representation (a.i.r.) for maxima of {X_j}_{j∈ℕ}.

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Asymptotic Independent Representation for Maxima

• We suggest studying the whole path

$$\mathbb{R}^+ \ni t \mapsto \boldsymbol{P}(\boldsymbol{M}_{[nt]} \leqslant \boldsymbol{v}_n)$$

and its limit behavior.

• The idea: Assume that

$$P(M_{[nt]} \leq v_n) \longrightarrow \alpha_t, \text{ as } n \to \infty, t \in \mathbb{Q},$$

for some dense subset $\mathbb{Q} \subset \mathbb{R}^+$ and we recover an a.i.r. from the limiting function α_t , provided the latter is of a special form.

 Note that α_t is non-increasing and can be regularized to the right-continuous function

$$\tilde{\alpha}_t = \sup_{\mathbb{Q} \ni u > t} \alpha_u,$$

for which $P(M_{[nt]} \leq v_n) \longrightarrow \tilde{\alpha}_t$ at every point of continuity.

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Asymptotic Independent Representation for Maxima

Theorem, J. (1993)

Assume there is a sequence $\{v_n\}$ such that for some dense subset $\mathbb{Q} \subset \mathbb{R}^+ = (0, +\infty)$

$$\mathsf{P}(\mathsf{M}_{[\mathsf{n}t]} \leqslant \mathsf{v}_{\mathsf{n}}) \longrightarrow \alpha_t, \text{ as } \mathsf{n} \to \infty, t \in \mathbb{Q},$$

where the limiting function α_t possesses the following properties:

$$\alpha_t > 0, t \in \mathbb{Q}$$

$$\sup_{t \in \mathbb{Q}} \alpha_t = 1,$$

$$\inf_{t \in \mathbb{Q}} \alpha_t = 0.$$

Then $\{X_k\}$ admits an asymptotic independent representation for maxima if, and only if, the function $g_{\alpha} = \log \circ \tilde{\alpha} \circ \exp is$ concave.

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Bibliography

- Balan, R. & Louhichi, S. (2010), Explicit conditions for the convergence of point processes associated to stationary arrays, *Elect. Comm. in Probab.*, **15**, 428–44.
- Chernick, M.R., Hsing, T., McCormick, W.P. (1991), Calculating the extremal index for a class of stationary sequences, *Adv. Appl. Probab.* 23, 835–850.
- Bartkiewicz, K., Jakubowski, A., Mikosch, T. & Wintenberger, O. (2011), Stable limits for sums of dependent infinite variance random variables, *Probab. Theory Rel. Fields*, **150**, 337–372.
- de Haan, L. & Ferreira, A. (2006), **Extreme Value Theory. An Introduction**, Springer, New York.
- Galambos, J. (1978), **The Asymptotic Theory of Extreme Order Statistics**, Wiley, New York.

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Bibliography

- Jakubowski, A. (1991), Relative extremal index of two stationary processes, *Stochastic Process. Appl.*, 37, 281–297.
- Jakubowski, A. (1993), An asymptotic independent representation in limit theorems for maxima of nonstationary random sequences, *Ann. Probab.*, **21**, 819–830.
- Jakubowski, A. (1997), Minimal conditions in p-stable limit theorems II, *Stochastic Process. Appl.*, 68, 1–20.
- Leadbetter, M. R. (1983) Extremes and local dependence in stationary sequences, *Z. Wahr. verw. Gebiete*, 65, 291–306.
- Leadbetter, M. R., Lindgren, G. & Rootzén, H. (1983)
 Extremes and related properties of random sequences and processes, Springer, Berlin.

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity

Bibliography

- Loynes, R.M. (1965), Extreme values in uniformly mixing stationary processes, *Ann. Math. Statist.*,36, 993–999.
- Newell, G. F. (1964) Asymptotic extremes for m-dependent random variables, *Ann. Math. Statist.*, 35, 1322–1325.
- O'Brien, G. L. (1974) The maximum term of uniformly mixing stationary processes, *Z. Wahr. verw. Gebiete*, **30**, 57–63.
- O'Brien, G. L. (1987) Extreme values for stationary and Markov sequences, *Ann. Probab.*, **15**, 281–292.

EVLT without EVD

Adam Jakubowski

Limit theorems for extrema

O'Brien's theory

Managing clusters of big values

Extremal index

Non-stationarity