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Content

I. An overview.
II. O’Brien’s theory:

• Phantom distribution function and criteria for its
existence.

• Extremal index of a stationary sequence.
III. A multi-sequence method for multivariate extremes.
IV. Calculating limits for maxima of random fields.

Phantom distribution function and extremal index for
stationary random fields.

V. An asymptotic (r ≠ 1)-dependent representation for
r -th order statistics from a stationary sequence. Un-
derstanding joint distributions of order statistics.

VI. Extremes on D([0,1]).
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Limit theorems for extrema due to Gnedenko
(with complements due to de Haan)

• {Xj}jœN - an i.i.d. sequence of random variables,
Mn = max1˛j˛n Xj , n œ N.

• Problem: find an > 0,bn œ R and a non-degenerate
distribution function H such that

(ú) lim
næŒ

P
!
(Mn ≠ bn)/an ˛ x

"
= H(x), x œ R.

• Question I: identify possible types of limiting
distributions (3 types or one-parameter family
indexed with “ œ R).

• Question II: describe when a particular distribution F
of Xj leads to the given limiting H (“domains of
attraction”).

• Question III: for given F and H determine
asymptotically an and bn.

• Question IV: find a rate of convergence in (ú).



EVLT without EVD

Adam Jakubowski

Limit theorems for
extrema

O’Brien’s theory

Managing clusters
of big values

Extremal index

Non-stationarity

Bibliography

4

Comments on the extreme value limit theory
• (+) Parallels the limit theory for sums.
• (±) The exists a variety of limiting laws with quite

different properties.
• (≠) Limiting laws in general do not scale: if Xj ’s are

standard normal and

lim
næŒ

P
!
(Mn ≠ bn)/an ˛ x

"
= exp(≠e≠x),

and if X Õj ≥ N (0,‡2), where ‡2 ”= 1, then
limnæŒ P

!
(M Õn ≠ bn)/an ˛ x

"
= either 0 or 1.

• (≠) The last property makes difficult deducing limit
properties on the base of conditional distributions.

• (≠) In many practical tasks only a single sequence
{vn} is of interest. For example:
¶ For given –close to 1 find

lim
næŒ

P
!
Mn ˛ vn

"
= – œ (0,1).

¶ Find exact asymptotics (large deviations) of

P
!
Mn ˇ vn

"
æ 0.
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O’Brien’s theory for maxima of stationary sequences
(1974, 1987)

• Basic observation. If {Xj} are i.i.d. and Xj ≥ F , then
for arbitrary sequence {vn}

P(Mn ˛ vn) = F (vn)
n = exp

!
≠ n(1≠ F (vn))

"
+ o(1).

• O’Brien’s (1974) observation: Given – œ (0,1), it is
possible to find constants {vn = vn(–)} such that

P(Mn ˛ vn) = F (vn)
n æ –, as næŒ,

if, and only if,

F (Fú≠) = 1 and lim
xæFú≠

1≠ F (x)
1≠ F (x≠) = 1,

where
Fú = sup{x : F (x) < 1}.

• If for some – œ (0,1) then for every – œ (0,1)!
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O’Brien’s theory for maxima of stationary sequences

• By definition, a distribution function G is regular (in
the sense of O’Brien) if

G(Gú≠) = 1 and lim
xæGú≠

1≠G(x)
1≠G(x≠) = 1.

• Now suppose that {Xj} is a stationary sequence of
random variables, with marginal distribution F .

• Following O’Brien (1987) we call any distribution
function G satisfying

(ú) P
!
Mn ˛ vn

"
≠Gn(vn)æ 0, as næŒ,

for all sequences {vn}, a phantom distribution
function for {Xj}.

• Clearly (ú) is equivalent to

supv |P
!
Mn ˛ v

"
≠Gn(v)|æ 0, as næŒ.

• G is not uniquely determined!
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O’Brien’s theory for maxima of stationary sequences

• O’Brien (1987) gave sufficient condition for the
existence of a regular phantom distribution function.

• In J. (1991) and J. (1993) necessary and sufficient
conditions were given.
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O’Brien’s theory for maxima of stationary sequences

Theorem
Let {Xj} be stationary. The following are equivalent:

1 The sequence {Xj} admits a regular phantom
distribution function.

2 There exists a sequence {vn} and – œ (0,1) such
that

P(Mn ˛ vn)æ –.

and the following Condition BŒ(vn) holds: as næŒ

sup
p,qœN

--P
!
Mp+q ˛ vn

"
≠ P
!
Mp ˛ vn

"
P
!
Mq ˛ vn

"--æ 0,

3 There exists – œ (0,1) such that for some dense
subset Q µ R+

P(M[nt] ˛ vn)æ –t , t œ Q.
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O’Brien’s theory for maxima of stationary sequences

• In fact, given – œ (0,1) and {vn} we can construct a
regular phantom distribution function G for {Xj}.

• First, we can replace {vn} with

vún =

I
max{vk : 1 ˛ k ˛ n, vk < Fú} if ”= ÿ,
inf{vn : n œ N} otherwise,

which is nondecreasing.
• Then one can define

G(x) =

Y
__]

__[

0, if x < vú1 ,
–1/n, if vún ˛ x < vún+1,
1, if x ˇ sup{vún : n œ N}.
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O’Brien’s theory for maxima of stationary sequences

• How to check limnæŒ P
!
Mn ˛ vn

"
= –?

• By mixing, for some kn æŒ,

P
!
Mn ˛ vn

"
=
1
P
!
M[n/kn] ˛ vn

"2kn
+ o(1),

= exp
1
≠ knP

!
M[n/kn] > vn

"2
+ o(1).

• O’Brien (1987) gives conditions for kn which allow to
write

= exp
1
≠ nP

!
X0 > vn,M[n/kn]≠1 ˛ vn

"2
+ o(1).

• This extends earlier results of Newell (1964) for
m-dependent sequences and many results for
Markov chains (see e.g. Chernick et al. (1991)).
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Managing clusters of big values

• Let us observe that in O’Brien’s formula (writing rn for
[n/kn])

P
!
X0 > vn,Mrn≠1 ˛ vn

"
= P
!
Mrn≠1 ˛ vn

"
≠P
!
Mrn ˛ vn

"
.

• This means that on the one hand

P
!
Mn ˛ vn

"
= exp

1
≠ knP

!
Mrn > vn

"2
+ o(1),

while on the other hand

P
!
Mn ˛ vn

"
= exp

1
≠ nP

!
X0 > vn,Mrn≠1 ˛ vn

"2
+ o(1)

= exp
3
≠ kn

1
rn

1
P
!
Mrn≠1 ˛ vn

"
≠ P
!
Mrn ˛ vn

"224
+ o(1).

• Hence it must be

kn

1
P
!
Mrn < vn

"
≠rn

1
P
!
Mrn≠1 ˛ vn

"
≠P
!
Mrn ˛ vn

"22
æ 0.
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Managing clusters of big values
Lemma (J. 1997, also BJMW 2011, Balan & Louichi 2010

Let Z1,Z2, . . . be strictly stationary random vectors. Set
T0 = 0, Tk =

qk
j=1 Zj , k œ N. If 0 /œ U, then for every

n œ N and every m œ N, m ˛ n, the following inequality
holds:
---P(Tn œ U)≠ n

!
P(Tm+1 œ U)≠ P(Tm œ U)

"---

˛ 3mP(Z1 ”= 0) + 2
ÿ

1˛i<j˛n
j≠i>m

P(Zi ”= 0,Zj ”= 0).

Set n = rn, Zk = I{Xk > vn}, U = (0,+Œ), to get
---P(Mrn > vn)≠ rn

!
P(Mm+1 > vn)≠ P(Mm > vn)

"---

=
---P(Mrn > vn)≠ rn

!
P(X0 > vn,Mm ˛ vn)

"---

˛ 3mP(X1 > vn) + 2
ÿ

1˛i<j˛n
j≠i>m

P(Xi > vn,Xj > vn).
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Managing clusters of big values

Corollary

If kn æŒ and mn are such that

lim
næŒ

knmnP(X1 > vn) = 0,

lim
næŒ

kn
ÿ

1˛i<j˛[n/kn ]
j≠i>mn

P(Xi > vn,Xj > vn) = 0,

(plus mixing into kn blocks) then

P
!
Mn ˛ vn

"
= exp

1
≠ nP

!
X0 > vn,Mmn ˛ vn

"2
+ o(1).
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Managing clusters of big values

Corollary

If kn æŒ is such that

P
!
Mn ˛ vn

"
=
1
P
!
M[n/kn] ˛ vn

"2kn
+ o(1),

lim
næŒ

knP(X1 > vn) = 0,

lim
mæŒ

lim sup
næŒ

kn
ÿ

1˛i<j˛[n/kn ]
j≠i>m

P(Xi > vn,Xj > vn) = 0,

if for each m œ N there exists

lim
næŒ

nP
!
X0 > vn,Mm ˛ vn

"
= —(m),

then
lim

næŒ
P
!
Mn ˛ vn

"
= exp

!
≠ lim

mæŒ
—(m)

"
.
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Extremal index due to Leadbetter(1983), also
Loynes(1965), O’Brien (1974)

• The extremal index of a stationary sequence {Xj} is
a number ◊ œ (0,1), such that for all · > 0,

(ú) P
!
Mn ˛ un(·)

"
æ e≠◊·

whenever

(úú) nP
!
X1 > un(·)

"
æ ·.

• Let {‚Xj} be the sequence “associated” to {Xn}, i.e.
‚Xj ’s are i.i.d. with the same marginal distributions as
Xj : L(‚Xj) = L(Xj). Then (**) means
P(„Mn ˛ un(·))æ e≠· and (*) and (**) imply

P(Mn ˛ un)≠ P(„Mn ˛ un)
◊
æ 0,

at least for sequences un = un(·) defined by (**).
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Extremal index due to Leadbetter
In fact, Leadbetter (1983) proved that if ◊ > 0 then the
relation

P(Mn ˛ un)≠ P(„Mn ˛ un)
◊
æ 0,

holds for all sequences {un}. Hence G(x) = F ◊(x) is a
phantom distribution function for {Xj}.

Theorem
Let {Xj} be a stationary sequence. Then {Xj} has the
extremal index ◊ > 0 if and only if there exists a sequence
{vn} such that Condition BŒ(vn) holds and for some
–, ‚– œ (0,1)

P(Mn ˛ vn) æ –,

nP(X1 > vn) æ ≠ log ‚–.

In such a case
◊ =

log–
log ‚–
.
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A standard example

• Let Y1,Y2, . . . be an i.i.d. sequence with regular
distribution function F . Define

Xj = Yj ‚ Yj+1, j œ N.

• Then {Xj} is a stationary and 1-dependent sequence
with extremal index ◊ = 1/2.

• This is because

P(max
1˛j˛n

Xj ˛ vn) = P( max
1˛j˛n+1

Yj ˛ vn)

= F (vn)
n+1 = exp

1
≠ (n + 1)

!
1≠ F (vn)

"2
+ o(1),

while

nP(X1 > vn) ≥ 2nP(Y1 > vn) = 2n
!
1≠ F (vn)

"
.

• A simple task: given a number ◊ œ (0,1) find a
stationary sequence with the extremal index ◊.
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A model for order statistics

• Let —1,—2, . . . ,—r ˇ 0 be such that
qr

q=1 —q = 1, and
let G be a (regular) distribution function.

• For each 1 ˛ q ˛ r , let {Ỹqj}jœN be independent,
identically distributed with

Ỹqj ≥ G—q .

• Let sequences {Ỹ1j}jœN, {Ỹ2j}jœN, . . . , {Ỹrj}jœN be
mutually independent.

• Define a new, (r ≠ 1) - dependent sequence:

X̃j = Ỹ1j

‚
!
Ỹ2j ‚ Ỹ2,j+1

"

‚
!
Ỹ3j ‚ Ỹ3,j+1 ‚ Ỹ3,j+2

"

...
‚
!
Ỹrj ‚ Ỹr ,j+1 ‚ . . . ‚ Ỹr ,j+r≠1

"
.
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A model for order statistics

• Let M̃(1)
n , M̃

(2)
n , . . . , M̃

(r)
n be the highest order statistics

for X̃1, X̃2, . . . , X̃n defined above.
• If vn is such that

P(M̃(1)
n ˛ vn)≠æ–1, as næŒ,

where –1 œ (0,1),
• then also for q = 2,3, . . . , r

P(M̃(q)
n ˛ vn)≠æ–q, as næŒ,

where –q are functions of –1 and —1,—2, . . .—r .
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Non-stationarity - some motivating examples

R. Ballerini and S. Resnick, Records from improving
populations, J. Appl. Probab., 22 (1985) 487–502.

{Xj} - i.i.d. sequence, FXj - continuous, Yj = Xj + c · j .
What are the records of a nonstationary sequence {Yj}?
If F (x) = exp(≠exp(≠(x ≠ a)/b)), then

P
!
Yj ˛ x

"
= P
!
Xj ˛ x ≠ c · j

"
= F (x)ec·j/b

.

A. Kukush, Y. Chernikov and D. Pfeifer, Maximum
Likelihood Estimators in a Statistical Model of Natural
Catastrophe Claims with Trend, Extremes, 7 (2004)
309–336.

{Xj} - independent, Xj ≥ F “j , where “j = “ j≠1 for some
“ > 1.
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Non-stationarity - some motivating examples

• Common denominator: non-stationary model built on
independent variables, with distributions designed
according to some rule.

• Problem: What are the reasonable rules?
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Asymptotic Independent Representation for Maxima

• Let {Xj}kœN be an arbitrary sequence of random
variables. Define as before Mn = max1˛j˛n Xj .

• Suppose one can find a sequence {X̃j} of
independent random variables such that

sup
xœR1

---P
!
Mn ˛ x

"
≠ P
!
M̃n ˛ x

"---≠æ 0, as næŒ,

where M̃n is the n-th partial maximum of Xj ’s.
• Then {X̃j} is said to provide an asymptotic

independent representation (a.i.r.) for maxima of
{Xj}jœN.
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Asymptotic Independent Representation for Maxima

• We suggest studying the whole path

R+ – t ‘æ P
!
M[nt] ˛ vn

"

and its limit behavior.
• The idea: Assume that

P
!
M[nt] ˛ vn

"
≠æ–t , as næŒ, t œ Q,

for some dense subset Q µ R+ and we recover an
a.i.r. from the limiting function –t , provided the latter
is of a special form.

• Note that –t is non-increasing and can be
regularized to the right-continuous function

–̃t = sup
Q–u>t

–u,

for which P
!
M[nt] ˛ vn

"
≠æ –̃t at every point of

continuity.
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Asymptotic Independent Representation for Maxima

Theorem, J. (1993)

Assume there is a sequence {vn} such that for some
dense subset Q µ R+ = (0,+Œ)

P
!
M[nt] ˛ vn

"
≠æ–t , as næŒ, t œ Q,

where the limiting function –t possesses the following
properties:

–t > 0, t œ Q

sup
tœQ
–t = 1,

inf
tœQ
–t = 0.

Then {Xk} admits an asymptotic independent
representation for maxima if, and only if, the function
g– = log ¶Â– ¶ exp is concave.
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