A structural risk-neutral model for pricing and hedging power derivatives

René Aïd, Luciano Campi, Nicolas Langrené

Universities Paris 13 & Paris 7 EDF R&D - FiME Research Centre

▲
 ▲
 ▲

Contents

- Position of the problem
 - Electricity prices modeling
 - Related works
- 2 Spot model
 - Design
 - Estimation
- Operation of the second sec
 - Dynamics of fuels etc
 - Local risk minimization
 - Futures
 - Options
 - Hedging with futures on electricity

4 Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

Model requirements

- realistic
- robust
- tractable
- consistent

Electricity prices modeling Related works

Two types of modeling

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

Equilibrium model

	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)	×		
Kanamura & Ohashi (07)	×		
Cartea & Villaplana (08)	×	×	
Coulon & Howison (09)	×	×	
Lyle & Elliot (09)	×	×	×

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 5 / 45

Position of the problem

Spot model Pricing & hedging Conclusion Electricity prices modeling Related works

This talk

Objectives					
pricing and hedging power derivatives					
using an improved version of Aïd, C., Nguyen & Touzi (09) Structural Risk-Neutral model					
	Spot	Futures	Options		
Aïd, C., Nguyen & Touzi (09)	×	×			
improved SRN model	×	×	×		

Design Estimation

Initial SRN Model

Variables

- fuels, $1 \leq i \leq n$
- demand (MW)
 - capacities (en MW)
 - fuel prices
 - heat rates ($h_i S_t^i$ en \in /MWh, earrow en i

Electricity price (€/MWh)

$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i=1} C_t^k \leq D_t \leq \sum_{k=1}^{i} C_t^k ight\}}$

Design Estimation

Initial SRN Model

Variables

 $\begin{array}{ll} n & \mbox{fuels, } 1 \leq i \leq n \\ D_t & \mbox{demand (MW)} \\ C_t^i & \mbox{capacities (en MW)} \\ S_t^i & \mbox{fuel prices} \\ h_i & \mbox{heat rates } (h_i S_i^i \mbox{ en } \in / MWh, \end en i) \end{array}$

Electricity price (€/MWh)

$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k ight\}}$

Design Estimation

Initial SRN Model

Variables

 $\begin{array}{ll}n & \text{fuels, } 1 \leq i \leq n\\ D_t & \text{demand (MW)}\\ C_t^i & \text{capacities (en MW)}\\ S_t^i & \text{fuel prices}\\ \end{array}$

Electricity price (€/MWh)

$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k ight\}}$

Design Estimation

Initial SRN Model

Variables

 $\begin{array}{ll}n & \text{fuels, } 1 \leq i \leq n\\ D_t & \text{demand (MW)}\\ C_t^i & \text{capacities (en MW)}\\ S_t^i & \text{fuel prices}\\ h_i & heat \ rates \ (h_i S_t^i \ \text{en} \in /\text{MWh}, \nearrow \end{array}$

Electricity price (€/MWh)

$\widehat{P}_{t} = \sum_{i=1}^{n} h_{i} S_{t}^{i} \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_{t}^{k} \le D_{t} \le \sum_{k=1}^{i} C_{t}^{k}\right\}}$

Spot model

Design

Initial SRN Model

Variables

- fuels, $1 \le i \le n$ n
- D_t demand (MW)
- C_t^i capacities (en MW) Sⁱ
 - fuel prices

7 / 45

Spot model

Design

Initial SRN Model

Variables

- n fuels, 1 < i < n
- demand (MW) D_t
- C_t^i capacities (en MW) S_t^i
 - fuel prices
- heat rates $(h_i S_t^i \text{ en } \in /MWh, \nearrow \text{ en } i)$ h;

$$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\right\}}$$

Spot model

Design

Initial SRN Model

Variables

- fuels, 1 < i < nn
- demand (MW) D_t
- C_t^i capacities (en MW) S_t^i
 - fuel prices
 - heat rates $(h_i S_t^i \text{ en } \in /MWh, \nearrow \text{ en } i)$

Electricity price (\in /MWh)

h;

$$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\right\}}$$

7 / 45

Design Estimation

Initial SRN model

Pros

- Consistency between electricity prices and fuel prices
- Consistency between electricity prices and demand

< □ > < □ > < □ > < □ > < □ > < □ >

Design Estimation

Initial SRN model

Pros

• Consistency between electricity prices and fuel prices

• Consistency between electricity prices and demand

(日)

Design Estimation

Initial SRN Model - illustration

Spot price (in €/MWh)

9 / 45

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives

Design Estimation

Initial SRN Model - illustration

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 10 / 45

Design Estimation

Initial SRN Model - illustration

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 11 / 45

Design Estimation

Improved SRN model

• Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\right\}}$

< □ > < □ > < □ > < □ > < □ > < □ >

Design Estimation

Improved SRN model

- Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\right\}}$
- Available capacity $\overline{C}_t := \sum_{k=1}^n C_t^k$

4 A 1

A B b A B b

Design Estimation

Improved SRN model

- Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\right\}}$
- Available capacity $\overline{C}_t := \sum_{k=1}^n C_t^k$
- Price spikes occur when the electric system is under stress, i.e. $\overline{C}_t D_t$ is small

・ 何 ト ・ ヨ ト ・ ヨ ト

Design Estimation

Improved SRN model

- Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\}}$
- Available capacity $\overline{C}_t := \sum_{k=1}^n C_t^k$
- Price spikes occur when the electric system is under stress, i.e. $\overline{C}_t D_t$ is small

$$y_t := \frac{P_t}{\widehat{P}_t}$$
 as a (nonlinear) function of $x_t := \overline{C}_t - D_t$

< □ > < □ > < □ > < □ > < □ > < □ >

Design Estimation

Improved SRN model - Estimation

Figure: PowerNext - 19th hours Nov, 13th 06 to April 30th 10

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 13 / 45

-

▲
 ▲
 ▲

Design Estimation

Improved SRN model - Estimation

Figure: PowerNext - 19th hours Nov, 13th 06 to April 30th 10

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 13 / 45

э

Design Estimation

Improved SRN model - Estimation

Figure: PowerNext - 19th hours Nov, 13th 06 to April 30th 10

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 13 / 45

Design Estimation

Improved SRN model - Estimation

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 🛛 14 / 45

Design Estimation

Improved SRN model - Estimation

э

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 15 / 45

Design Estimation

Improved SRN model - Estimation

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 16 / 45

Design Estimation

Improved SRN model - Estimation

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 17 / 45

Design Estimation

Improved SRN model - Estimation

э

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 👘 18 / 45

Design Estimation

Improved SRN model - Estimation

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 19 / 45

Design Estimation

Improved SRN model - Estimation

Estimated relation :
$$y_t = \frac{\gamma}{x_t^{\nu}}$$

Improved SRN model

$$P_t = g\left(\sum_{k=1}^n C_t^k - D_t\right) \times \left(\sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k\right\}}\right)$$

with scarcity function

$$g(x) := \min\left(\frac{\gamma}{x^{\nu}}, M\right) \mathbf{1}_{\{x > 0\}} + M \mathbf{1}_{\{x \le 0\}}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Design Estimation

Improved SRN model - Back-testing

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 21 / 45

Design Estimation

Improved SRN model - Back-testing

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 22 / 45

Design Estimation

Improved SRN model - Backtesting

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 23 / 45

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

(4) (日本)

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- ullet valuation : expected discounted payoff under $\widehat{\mathbb{Q}}$
- allows to decompose contingent claim into hedgeable part (fuels) and non-hedgeable part (demand, capacities)
- allows explicit formulas

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- \bullet valuation : expected discounted payoff under $\widehat{\mathbb{Q}}$
- allows to decompose contingent claim into hedgeable part (fuels) and non-hedgeable part (demand, capacities)
- allows explicit formulas

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Dynamics of fuels

Assume r constant, convenience yields and storage costs zero for simplicity.

Fuels

 $n \ge 1$ fuels (as coal, gas, oil ...) whose cost $h_i S^i$ to produce 1 MWh of electricity follows

$$dS_t^i = S_t^i (\mu_t^i dt + \sigma_t^i dW_t^{S,i})$$

where $W^{S,i}$ are correlated BMs and coeff's are chosen so that $h_1S^1 < \ldots < h_nS^n$ (model spreads $Y^i = h_{i+1}S^{i+1} - h_iS^i$ as independent geometric BMs).

NA and completeness assumption

There exists a unique risk-neutral probability $\mathbb{Q} \sim \mathbb{P}$ for *S*.

25 / 45

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

< □ > < □ > < □ > < □ > < □ > < □ >

Local risk minimization I

Roughly speaking, let X be a multidimensional (discounted) price process

- Introduced by Föllmer-Schweizer (1991)
- Under regularity condition, any payoff H with maturity T

$$H = H_0 + \int_0^T \xi_t^H dX_t + L_T^H$$

- $\int_0^T \xi dX$ is the hedgeable part, L_T^H the residual risk, $H_0 + L_T^H$ the cost of the strategy
- How to compute H₀, ξ^H, L^H? Easy when X is a martingale : use Kunita-Watanabe decomposition !

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

< □ > < □ > < □ > < □ > < □ > < □ >

Local risk minimization I

Roughly speaking, let X be a multidimensional (discounted) price process

- Introduced by Föllmer-Schweizer (1991)
- Under regularity condition, any payoff H with maturity T

$$H = H_0 + \int_0^T \xi_t^H dX_t + L_T^H$$

- $\int_0^T \xi dX$ is the hedgeable part, L_T^H the residual risk, $H_0 + L_T^H$ the cost of the strategy
- How to compute H₀, ξ^H, L^H? Easy when X is a martingale : use Kunita-Watanabe decomposition !

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

< □ > < □ > < □ > < □ > < □ > < □ >

Local risk minimization I

Roughly speaking, let X be a multidimensional (discounted) price process

- Introduced by Föllmer-Schweizer (1991)
- Under regularity condition, any payoff H with maturity T

$$H = H_0 + \int_0^T \xi_t^H dX_t + L_T^H$$

- $\int_0^T \xi dX$ is the hedgeable part, L_T^H the residual risk, $H_0 + L_T^H$ the cost of the strategy
- How to compute H₀, ξ^H, L^H? Easy when X is a martingale : use Kunita-Watanabe decomposition !

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

< □ > < □ > < □ > < □ > < □ > < □ >

Local risk minimization I

Roughly speaking, let X be a multidimensional (discounted) price process

- Introduced by Föllmer-Schweizer (1991)
- Under regularity condition, any payoff H with maturity T

$$H = H_0 + \int_0^T \xi_t^H dX_t + L_T^H$$

- $\int_0^T \xi dX$ is the hedgeable part, L_T^H the residual risk, $H_0 + L_T^H$ the cost of the strategy
- How to compute H₀, ξ^H, L^H? Easy when X is a martingale : use Kunita-Watanabe decomposition !

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

< □ > < □ > < □ > < □ > < □ > < □ >

Local risk minimization II

- When X is not a martingale but not far from being so ...
- Föllmer-Schweizer (1991) : there exists a risk-neutral Q for X s.t.

$$H = \widehat{\mathbb{E}}[H] + \int_0^t \widehat{\xi}_t^H dX_t + \widehat{L}_T^H$$

- $H_0 = \widehat{\mathbb{E}}[H], \ \xi^H = \widehat{\xi}^H, \ L^H = \widehat{L}^H$
- $ullet \mathbb{Q}$ is called minimal equivalent martingale measure

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

- 4 回 ト - 4 三 ト

Local risk minimization II

- When X is not a martingale but not far from being so ...
- Föllmer-Schweizer (1991) : there exists a risk-neutral Q for X s.t.

$$H = \widehat{\mathbb{E}}[H] + \int_0^T \widehat{\xi}_t^H dX_t + \widehat{L}_T^H$$

- $H_0 = \widehat{\mathbb{E}}[H], \ \xi^H = \widehat{\xi}^H, \ L^H = \widehat{L}^H$
- $ullet \mathbb{Q}$ is called minimal equivalent martingale measure
- Hobson (2005) : in diffusion models with non-tradable assets, $\widehat{\mathbb{E}}[H]$ is an upper bound for *U*-indifference bid price.

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

(4月) とうてい うち

Local risk minimization II

- When X is not a martingale but not far from being so ...
- Föllmer-Schweizer (1991) : there exists a risk-neutral Q for X s.t. ____

$$H = \widehat{\mathbb{E}}[H] + \int_0^T \widehat{\xi}_t^H dX_t + \widehat{L}_T^H$$

•
$$H_0 = \widehat{\mathbb{E}}[H], \ \xi^H = \widehat{\xi}^H, \ L^H = \widehat{L}^H$$

 $\bullet \ \mathbb{Q}$ is called minimal equivalent martingale measure

• Hobson (2005) : in diffusion models with non-tradable assets, $\widehat{\mathbb{E}}[H]$ is an upper bound for *U*-indifference bid price.

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

イヨト イモト イモ

Local risk minimization II

- When X is not a martingale but not far from being so ...
- Föllmer-Schweizer (1991) : there exists a risk-neutral Q for X s.t. ____

$$H = \widehat{\mathbb{E}}[H] + \int_0^T \widehat{\xi}_t^H dX_t + \widehat{L}_T^H$$

- $H_0 = \widehat{\mathbb{E}}[H], \ \xi^H = \widehat{\xi}^H, \ L^H = \widehat{L}^H$
- $\widehat{\mathbb{Q}}$ is called minimal equivalent martingale measure
- Hobson (2005) : in diffusion models with non-tradable assets, $\widehat{\mathbb{E}}[H]$ is an upper bound for *U*-indifference bid price.

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Local risk minimization II

- When X is not a martingale but not far from being so ...
- Föllmer-Schweizer (1991) : there exists a risk-neutral Q for X s.t. ____

$$H = \widehat{\mathbb{E}}[H] + \int_0^T \widehat{\xi}_t^H dX_t + \widehat{L}_T^H$$

- $H_0 = \widehat{\mathbb{E}}[H], \ \xi^H = \widehat{\xi}^H, \ L^H = \widehat{L}^H$
- $\widehat{\mathbb{Q}}$ is called minimal equivalent martingale measure
- Hobson (2005) : in diffusion models with non-tradable assets, $\widehat{\mathbb{E}}[H]$ is an upper bound for *U*-indifference bid price.

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Dynamics of demand and capacities

Demand & capacities

$$dD_{t} = a(t, D_{t}) dt + b(t, D_{t}) dW_{t}^{D}$$
$$dC_{t}^{i} = \alpha_{i} (t, C_{t}^{i}) dt + \beta_{i} (t, C_{t}^{i}) dW_{t}^{C,i}$$

where W^D , W^C and W^S are independent BMs.

Minimal martingale measure

The minimal martingale measure $\widehat{\mathbb{Q}}$ is given by

$$\widehat{\mathbb{Q}}|_{\mathcal{F}_t} = \mathbb{Q}|_{\mathcal{F}_t^{\mathcal{S}}} \otimes \mathbb{P}|_{\mathcal{F}_t^{\mathcal{C},\mathcal{D}}}$$

where \mathcal{F}_t is the filtration generated by W^S, W^D, W^C .

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

< □ > < □ > < □ > < □ > < □ > < □ >

Futures

Under our assumptions, we can prove the following

Futures prices
$$F_t^e(T) = \widehat{\mathbb{E}}_t[P_T]$$

$$F_t^e(T) = \sum_{i=1}^n h_i G_i^T(t, C_t, D_t) F_t^i(T)$$
with :

$$G_i^T(t, C_t, D_t) = \mathbb{E}_t \left[g\left(\sum_{k=1}^n C_T^k - D_T\right) \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_T^k \le D_T \le \sum_{k=1}^i C_T^k\right\}} \right]$$

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Futures prices - hedging

Futures price dynamics

 $dF_t^e(T) = \sum_{i=1}^n h_i \left[G_i^T(t, C_t, D_t) dF_t^i(T) + F_t^i(T) dG_i^T(t, C_t, D_t) \right]$

$$dG_i^{T}(t, C_t, D_t) = \sum_{k=1}^{n} \frac{\partial G_i^{T}}{\partial c_k} (t, C_t, D_t) \beta_k(t, C_t^k) dW_t^{C,k} + \frac{\partial G_i^{T}}{\partial z} (t, C_t, D_t) b(t, D_t) dW_t^D$$

so that

$$dF_t^e(T) = \theta_t^S dW_t + \theta_t^C dW_t^C + \theta_t^D dW_t^D$$

for adapted suitable processes $\theta^S, \theta^C, \theta^D$, which are explicitly computable.

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

A (1) < A (1) < A (1)</p>

Futures prices - hedging

- To go further, need to choose more specific dynamics for demand and capacities
- deterministic part for seasonality + Ornstein-Uhlenbeck
- G_i^T explicite as function of *extended incomplete* Goodwin-Staton integral :

$$\widetilde{\mathcal{G}}(x,y;\nu) = \int_{x}^{\infty} \frac{1}{\left(y+z\right)^{\nu}} e^{-z^{2}} dz$$

 ... for which efficient numerical algorithms are provided in Aïd, C. & Langrené (10).

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 🛛 32 / 45

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 33 / 45

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 34 / 45

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 35 / 45

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 36 / 45

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

∃ ► < ∃ ►</p>

▲
 ▲
 ▲

Futures prices - hedging

Numerical test

- Hedging a 3-months electricity futures with a delivery period of 1 hour
- with a daily rebalanced basket of futures contracts on fuels

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Futures prices - hedging

Sample paths (in €)

< □ > < □ > < □ > < □ > < □ > < □ >

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Futures prices - hedging

Distribution of hedging error: Time evolution

Remarks

- Positive values are losses
- Far from maturity : perfect hedge; electricity futures is equivalent to a basket of fuels
- Close to maturity : inefficient hedge

Image: A matrix

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 38 / 45

Dynamics of fuels etc Local risk minimization Futures **Options** Hedging with futures on electricity

Spread options

Spread option with a 2 fuel model

The price π_0 at time t = 0 of a call spread option with pay-off $H = (P_T - h_1 S_T^1 - K)^+$ is given by :

$$\pi_{0} = \int_{\mathbb{R}^{2}} f_{C_{T}^{1} - D_{T}}(z) f_{C_{T}^{2}}(c) \left\{ \phi_{1}(c, z) \mathbf{1}_{\{z > 0\}} + \phi_{2}(c, z) \mathbf{1}_{\{z \le 0\}} \right\} dcdz$$

$$\phi_1 = (g-1)BS_0(\sigma_1, K)\mathbf{1}_{\{g>1\}}$$

$$\phi_{2} = g \int_{0}^{\infty} \hat{f}_{Y_{T}^{1}}(y) BS_{0}\left(\sigma_{2}, \frac{K + (1 - g)y}{g}\right) \left(\mathbf{1}_{\{g \le 1\}} + \mathbf{1}_{\{g > 1\}}\mathbf{1}_{\{y < \frac{K}{g-1}\}}\right) dy$$

$$+ \left(gY_0^2 \mathcal{N}\left(\frac{\left(r - \frac{\sigma_1^2}{2}\right) \mathcal{T} - \ln\left(\frac{\kappa}{(g-1)Y_0^1}\right)}{\sigma_1 \sqrt{\mathcal{T}}}\right) + (g-1) BS_0\left(\sigma_1, \frac{\kappa}{g-1}\right)\right) \mathbf{1}_{\{g>1\}}$$

with g := g(c + z).

Dynamics of fuels etc Local risk minimization Futures **Options** Hedging with futures on electricity

(I) < (II) < (II) < (II) < (II) < (II) < (III) </p>

Spread options

- semi-explicit formula : numerical integration
- partial hedging with futures on fuels and electricity, semi-explicit formulae for partial hedging strategy (not only for spread options)
- applied on European dark spread (i.e. energy gas) call option with a period of delivery of 1 hour

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Hedging with futures on electricity

Consider $H = \varphi(F_T^e(T^*), F_T(T^*), C_T, D_T)$ with $T^* > T$.

- By Markov, its $\widehat{\mathbb{Q}}$ -price in t is $\phi(t, F_t, C_t, D_t)$ with $\phi(t, x, c, z)$ regular
- H's decomposition into hedgeable part/residual risk is

$$H = \widehat{\mathbb{E}}[H] + \int_0^T \widehat{\xi}_t dF_t + \int_0^T \widehat{\xi}_t^e dF_t^e + \widehat{L}_T$$

where

$$\begin{aligned} \widehat{\xi}_{t}^{e} &= \frac{1}{||(\theta_{t}^{C}, \theta_{t}^{D})||^{2}} \left(\sum_{i} \theta_{t}^{C, i} \beta_{i} \partial_{c_{i}} \phi + \theta_{t}^{D} b \partial_{z} \phi \right) \\ \widehat{\xi}_{t}^{i} &= \partial_{y_{i}} \phi + \frac{h_{i} G_{i}^{T*}}{||(\theta_{t}^{C}, \theta_{t}^{D})||^{2}} \left(\sum_{i} \theta_{t}^{C, i} \beta_{i} \partial_{c_{i}} \phi + \theta_{t}^{D} b \partial_{z} \phi \right) \end{aligned}$$

$\widehat{L}_{\mathcal{T}}$ can be computed explicitly as well $\neg \bullet \bullet \bullet \bullet \bullet$

Dynamics of fuels etc Local risk minimization Futures Options Hedging with futures on electricity

Hedging with futures on electricity

Consider $H = \varphi(F_T^e(T^*), F_T(T^*), C_T, D_T)$ with $T^* > T$.

- By Markov, its $\widehat{\mathbb{Q}}$ -price in t is $\phi(t, F_t, C_t, D_t)$ with $\phi(t, x, c, z)$ regular
- H's decomposition into hedgeable part/residual risk is

$$H = \widehat{\mathbb{E}}[H] + \int_0^T \widehat{\xi}_t dF_t + \int_0^T \widehat{\xi}_t^e dF_t^e + \widehat{L}_T$$

where

$$\begin{aligned} \widehat{\xi}_{t}^{e} &= \frac{1}{||(\theta_{t}^{C}, \theta_{t}^{D})||^{2}} \left(\sum_{i} \theta_{t}^{C, i} \beta_{i} \partial_{c_{i}} \phi + \theta_{t}^{D} b \partial_{z} \phi \right) \\ \widehat{\xi}_{t}^{i} &= \partial_{y_{i}} \phi + \frac{h_{i} G_{i}^{T*}}{||(\theta_{t}^{C}, \theta_{t}^{D})||^{2}} \left(\sum_{i} \theta_{t}^{C, i} \beta_{i} \partial_{c_{i}} \phi + \theta_{t}^{D} b \partial_{z} \phi \right) \end{aligned}$$

 $\widehat{L}_{\mathcal{T}}$ can be computed explicitly as well $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$ René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependent part can be hedged ...
- ... unless we use energy future for partially hedging demand and capacities risk (see the paper Aïd-C.-Langrené)

Perspectives

- comparison with "real" quoted futures, calibration dynamics
- utility-based pricing of futures, options ...
- optimal investment/production problem, optimal switching

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependent part can be hedged ...
- ... unless we use energy future for partially hedging demand and capacities risk (see the paper Aïd-C.-Langrené)

Perspectives

- comparison with "real" quoted futures, calibration dynamics
- utility-based pricing of futures, options ...
- optimal investment/production problem, optimal switching

A D F A B F A B F A B

References

- Aïd, C., Nguyen Huu & Touzi, *Int. J. Theoretical & Applied Finance*, 2010
- Aïd, C., Langrené, 2010, available on HAL
- Barlow, Math. Finance, 2002
- Benth & Koekebakker, J. of Energy Economics, 2007
- Benth & Vos, Tech. Rep., Math. Dept. Oslo, 2009
- Benth, Ekeland, Hauge & Nielsen, *Applied Math. Finance*, 2003
- Burger, Klar, Müller & Schlindlmayr, *Quantitative Finance*, 2004

不同 トイモトイモ

References

- Cartea & Figueroa, Applied Math. Finance, 2005
- Cartea & Villaplana, J. of Banking & Finance, 2008
- Coulon & Howison, J. of Energy Markets, 2009
- Deng, Tech. Rept., California Energy Institute, 2000
- Geman & Roncoroni, J. of Business, 2006
- Kanamura & Ohashi, Energy Economics, 2007
- Kolodnyi, J. of Engineering Mathematics, 2004

- Lyle & Elliott, Energy Economics, 2009
- Pham, Math. Meth. of Operations Research, 2000
- Pirrong & Jermakyan, J. of Banking & Finance, 2008¹
- Schweizer, Handbook Math. Finance, Cambridge Univ. Press, 2001

1. Olin Business School Tech. Rep. 2000