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SOCIAL CHOICE UNDER UNCERTAINTY

I Public policies involve dealing with risk/uncertainty: un-
employment, health, environment.

I Key result in social choice theory: Harsanyi’s (1955) theo-
rem.

I Theorem: (Expected utility + Pareto ex ante) imply that the so-
cial criterion must be a weighted sum of individuals’ expected
utilities.
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PROBLEMS WITH HARSANYI’S THEOREM

Harsanyi’s result has serious drawbacks:

I Ex ante vs ex post equity: Diamond (1967); Broome (1991).

I Conflict between equity and Pareto in a multidimensional
framework.
Applied to risk: Gajdos and Tallon (2002); Fleurbaey and
Maniquet (2011).

I Spurious unanimity and conflicting beliefs: Mongin (1995,
1998); Gilboa, Samet, Schmeidler (2004).

I Conflict between social rationality and Pareto for non-SEU
models: Danan, Gajdos, Hill and Tallon (2014).
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EX ANTE AND EX POST EQUITY

Consider the following lotteries (with p(ω1) = p(ω2) = 1/2):

ω1 ω2 ω1 ω2 ω1 ω2
u1 1 0 u1 1 0 u1 1 1
u2 1 0 u2 0 1 u2 0 0

Lottery 1 Lottery 2 Lottery 3

Diamond’s (1967) criticism: Lottery 2 is better than Lottery 3
because equal ex ante.
Broome’s (1991) criticism: Lottery 1 is better than Lottery 2 be-
cause equal ex post.
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PARETO VS. EQUITY AND SOCIAL RATIONALITY

When individuals are SEU with same beliefs but different risk
aversion, allocations of resources may seem unfair even though
Pareto dominant:

ω1 ω2 ω1 ω2
c1 100 1000 c1 80 1100
c2 100 1000 c2 110 800

Lottery 1 Lottery 2

If U1 = 1
2(c11)1/2 + 1

2(c12)1/2 and U2 = −1
2(c21)−1/2 − 1

2(c22)−1/2.
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I When individuals have different beliefs and risk attitudes,
it is impossible to consistently aggregate individual prefer-
ences (Hylland and Zeckhauser, 1979; Mongin, 1995).

I Several authors have argued that the Pareto principle is not
appealing in this context (Gilboa, Samet, Schmeidler, 2003;
Mongin, forth.).

I The main reason is what is called spurious unanimity: people
may have convergent opinions based on conflicting (false)
beliefs.
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NON EXPECTED UTILITY AND SOCIAL RATIONALITY

I When individuals are not SEU, social assessment may vio-
late weak rationality requirements even when individuals
have exactly the same preferences.

I Consider the following example by Danan, Gajdos, Hill and
Tallon (2014):
2 individuals, 2 states, MEU preferences:

Ui(f ) = minp∈C pui
(
f (ω1)

)
+ (1− p)ui

(
f (ω2)

)
.

If u1
(
f (ω1)

)
= u2

(
f (ω2)

)
= 1, u1

(
f (ω2)

)
= u2

(
f (ω1)

)
= 0,

u1
(
g(ω1)

)
= u2

(
g(ω2)

)
= u1

(
g(ω2)

)
= u2

(
g(ω1)

)
= 1/2, and

u0 = 1/2u1 + 1/2u2,
then g �1 f , g �2 f , while u0

(
g(ω1)

)
= u0

(
g(ω2)

)
= u0

(
f (ω1)

)
=

u0
(
f (ω2)

)
.
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MORAL DILEMMAS

Main issues in the risk/uncertainty framework:
I Compatibility between equity and Pareto requirement.
I Individuals are not informed and may have different be-

liefs.
I Ex ante versus ex post evaluation.

Dilemma:
I One can endorse the Pareto principle, but to satisfy ex ante

equity one has to abandon social rationality (expected util-
ity; statewise dominance): Diamond (1967), Epstein and Se-
gal (1992), Grant, Kajii, Polak, Safra (2010).

I One can seek to promote social rationality and ex post eq-
uity, but then one has to abandon the usual efficiency re-
quirement: Fleurbaey (2010), Grant, Kajii, Polak, Safra (2012).
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A VARIETY OF THEORIES OF JUSTICE UNDER

UNCERTAINTY
I There are experimental evidence that people hold a vari-

ety of views regarding justice in risky situations (Cappelen,
Konow, Sorensen and Tungodden, 2013; Cettolin and Riedl,
2013):

I Utilitarian/Harsanyian view.
I Equalizing expected utility.
I Ex ante equity: equalizing expected income.
I Ex post equity: equalizing realized income...

I Views may depend on whether individuals took risk or were
submitted to risk (Cappelen, Konow, Sorensen and Tungod-
den, 2013).

I In this talk, I will explore some solutions, in the context of
a specific approach: fair social choice (Fleurbaey and Mani-
quet, 2011).
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MEASURING WELFARE IN ECONOMIC ENVIRONMENTS

I Most of the literature following Harsanyi’s theorem takes
for granted that vNM utilities are the right metric for mea-
suring individual wellbeing (Epstein and Segal, 1992; Ben
Porath et al., 1997; Gajdos and Maurin, 2004...).

I The measurement of wellbeing is a longstanding issue in
social choice and welfare theory.

I Fair social choice takes a specific approach in terms of mea-
suring welfare: measures based on resources but using or-
dinal preferences.
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FAIR SOCIAL CHOICE

I Measurement of welfare based on resources: money-metric
utility and equivalent income (Samuelson, 1974; King, 1983).

I Fair allocation theory and fair social choice often express
fairness principles in terms of resources, e.g. using transfer
principles (Pigou-Dalton).

I Fleurbaey and Maniquet (2011) have developed fair social
choice theory. They only developed an ex ante approach in
the case of risk.
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FUTURE GENERATIONS AND VARIABLE POPULATION

Many issues involve future generations. This brings additional
issues:

I The risk on the existence of future generations and discount-
ing (Schelling, 1995; Stern, 2006; Nordhaus, 2007, 2008; Weitz-
man, 2007 Dasgupta, 2008).

I Preference diversity/ preference change: how can we com-
pare individuals with different preferences?

I Preference uncertainty and the comparison of different pop-
ulations: population ethics problem (Blackorby, Bossert and
Donaldson, 2005; Asheim and Zuber, 2015).
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FRAMEWORK

I Economy: n individuals denoted i; two goods, market good
c ∈ R+ and non-market good q ∈ [0, 1].
A bundle for individual i is xi = (ci, qi).
An allocation: x = (xi)i∈N. X = (R+ × [0, 1])n the set of
allocations.

I Uncertainty: Savage framework.
I ω ∈ Ω: state of the world.
I f : Ω→ X, a simple act. F the set of simple acts.

f = (f1, · · · , fn).
I x ∈ F , a constant act.
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INDIVIDUAL PREFERENCES

Each individual i has preferences satisfying the following con-
ditions:

I Preferences are represented by a complete preorder Ri over
(R+ × [0, 1])Ω .

I There exists a continuous, increasing and quasi-concave func-
tion ui : R+ × [0, 1]→ R such that:

fi Ri gi ⇐⇒ E
(
ui(fi)

)
≥ E

(
ui(gi)

)
.

I For some q̄, and for any xi = (ci, qi) there exists z ∈ R+ such
that ui(z, q̄) = ui(ci, qi).
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EQUIVALENT MARKET GOOD CONSUMPTION

Definition
For any xi ∈ R+ × [0, 1], and given the preferences Ri of individ-
ual i, the equivalent market good consumption of xi, denoted ei(xi),
is the positive scalar such that

(ei(xi), q̄) Ii xi.

Definition

For any fi ∈
(
R2

+

)Ω, and given the preferences Ri of individual
i, the certainty equivalent market good consumption of fi, denoted
cei(fi) is the positive scalar such that(

cei(fi), q̄
)

Ii fi.
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GRAPHICAL ILLUSTRATION

q̄

fi(ω1)

State ω1
q̄

fi(ω2)

State ω2

c

q

c

q
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GRAPHICAL ILLUSTRATION

q̄

Ri

ei(fi(ω1))

fi(ω1) =

State ω1
q̄

Ri

fi(ω2)

ei(fi(ω2))

State ω2

c

q

c

q
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GRAPHICAL ILLUSTRATION

q̄

Ri

ei(fi(ω1))

fi(ω1) =

State ω1
q̄

Ri

fi(ω2)

ei(fi(ω2))

State ω2

c

q

c

q

cei(fi) cei(fi)
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CERTAINTY EQUIVALENT CONSUMPTION AS A

WELFARE MEASURE

I The equivalent market good consumption level ei(xi) ∈ R+

is a proper welfare measure, which is ordinally equivalent
to any individual utility function.

I There exists a continuous and increasing function vi such
that ui(xi) = vi

(
ei(xi)

)
I Also:

cei(fi) = v−1
i

(
E
(
ui(fi)

))
,

is a measure of ex ante welfare.



INTRODUCTION FRAMEWORK FAIR CRITERIA NON-EU AND BELIEFS VARIABLE POPULATION CONCLUSION

SOCIAL ORDERINGS

I R over acts (uncertain allocations).

I R0 over allocations.
I R0 is based on an ordering R∗ on R+, so that ∀x, y ∈ X,

xR0y⇔ (ei(xi))i∈N R∗ (ei(yi))i∈N .

I R∗ is supposed monotonic, quasi-concave (equity) and con-
tinuous (for the presentation).
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EQUALLY-DISTRIBUTED EQUIVALENT (EDE)

I Xe: egalitarian allocations, such that ei(xi) = ej(xj).
F e: egalitarian acts.

I Definition: For any x ∈ X, xe ∈ Xe is an EDE allocation if,

xI0xe.

An EDE act f e ∈ F e is an act yielding an EDE allocation in
each state of the world.

I The concept of an EDE can be extended when R0 is not con-
tinuous: Equally-Distributed Quasi-Equivalent (EDQE).
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GRAPHICAL ILLUSTRATION

q̄

f1(ω1)f2(ω1)

State ω1
q̄

f1(ω2)

f2(ω2)

State ω2

c

q

c

q
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GRAPHICAL ILLUSTRATION

q̄

R1

R2

f1(ω1) = e1(f1(ω1))

e2(f2(ω1))

f2(ω1)

State ω1
q̄

R1

R2

f1(ω2)

e1(f1(ω2))

f2(ω2) = e2(f2(ω2))

State ω2

c

q

c

q
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GRAPHICAL ILLUSTRATION

q̄

R1

R2

f1(ω1) = e1(f1(ω1))

e2(f2(ω1))

f2(ω1)

State ω1
q̄

R1

R2

f1(ω2)

e1(f1(ω2))

f2(ω2) = e2(f2(ω2))

State ω2

f e(ω1)
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GRAPHICAL ILLUSTRATION

q̄
State ω1

q̄
State ω2

f e(ω1)

f e(ω2)
ce1(f e)ce1(f e) ce2(f e)ce2(f e)

c

q

c

q
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EX ANTE VERSUS EX POST APPROACHES

I Even in simple case with one consumption good, two equally
probable states of the world and two individuals with dif-
ferent risk preferences, there exist a direct conflict between
the Pareto principle and Statewise Dominance for fair social
criteria.

I If the two individuals have different preferences there ex-
ist levels of consumption c, c̄ and c such that individual 1
prefers the sure level c to a prospect of having each of c̄ and
c with probability 1/2, while individual 2 prefers the uncer-
tain prospect to the sure consumption.

I Dilemma when the society may face the following prospects(
c c
c̄ c

)
and

(
c̄ c
c c

)
.
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THE EX ANTE APPROACH

The ex ante approach will abandon Statewise Dominance (where
social preference R0 are defined by a fair criterion) to satisfy the
Pareto principle:

Axiom: Pareto
For f , g ∈ F , if fiRigi (resp. fiPigi) for all i ∈ N, then fRg (resp.
fPg).

We have the following result:

Proposition

If R0 is continuous and R satisfies Pareto, then fRg if and only if

ce (f ) R0 ce (g) .
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PROOF

q̄

g1(ω1)

g2(ω1)

f1(ω1)

f2(ω1)

State ω1
q̄

f1(ω2)

f2(ω2)

g2(ω2)

g1(ω2)

State ω2

c

q

c

q
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PROOF

q̄

g1(ω1) = e1(g1(ω1))

g2(ω1)

f1(ω1)

f2(ω1) = e2(f2(ω1))

e1(f1(ω1))

e2(g2(ω1))

R2

R1

State ω1
q̄

f1(ω2)

f2(ω2) =
e2(f2(ω2))

g2(ω2)

g1(ω2) e1(g1(ω2))

e2(g2(ω2))

e1(f1(ω2))
R1

R1R2

State ω2

c

q

c

q
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PROOF

q̄

e1(g1(ω1))

e2(f2(ω1))

e1(f1(ω1))

e2(g2(ω1))

State ω1
q̄

e2(f2(ω2))

e1(g1(ω2))

e2(g2(ω2))

e1(f1(ω2))

State ω2

c

h

c

h
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PROOF

q̄

e1(g1(ω1))

e2(f2(ω1))

e1(f1(ω1))

e2(g2(ω1))

State ω1
q̄

e2(f2(ω2))

e1(g1(ω2))

e2(g2(ω2))

e1(f1(ω2))

State ω2

c

q

c

q

ce1(g1)

ce1(f1)

ce1(g1)

ce1(f1)

ce2(g2)
ce2(g2)

ce2(f2)ce2(f2)

f R g ⇐⇒ ce(f ) R ce(g) (Pareto)
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PROOF

q̄

c

q

ce1(g1)

ce1(f1)

ce2(g2)

ce2(f2)

f R g ⇐⇒ ce(f ) R ce(g) (Pareto)

⇐⇒ ce(f ) R0 ce(g)
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EX ANTE CRITERIA: COMMENTS

I Implicit assumption: R0 is used to rank sure allocations.
The result is a direct application of the Pareto principle.

I It may be possible to add constraints on what R0 should be:
I For instance, if we want the social criterion to be an expected

utility, we will obtain a linear aggregation of some VNM
utility functions (but these are generally not the welfare met-
rics of the fair social choice approach).

I Fleurbaey and Maniquet (2011) added an independence con-
dition to obtain that R0 is a maxmin.
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EX POST AXIOMS

For the ex post approach, consider the following axioms:

Axiom: Dominance
For f , g ∈ F , if for all ω ∈ Ω, f (ω)R0g(ω) (resp. f (ω)P0g(ω)) then
fRg (resp. fPg).

Axiom: Pareto for Equal or No Risk
For f , g ∈ (F e ∪ X), if fiRigi (resp. fiPigi) for all i ∈ N, then fRg
(resp. fPg).
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PROPOSITION

Proposition

If R0 is continuous and R satisfies Pareto for Equal or No Risk
and Dominance, then fRg if and only if

ce (f e) R0 ce (ge) .
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PROOF

q̄

g1(ω1)

g2(ω1)

f1(ω1)

f2(ω1)

State ω1
q̄

f1(ω2)

f2(ω2)

g2(ω2)

g1(ω2)

State ω2

c

h

c

h
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PROOF

q̄

g1(ω1) = e1(g1(ω1))

g2(ω1)

f1(ω1)

f2(ω1) = e2(f2(ω1))

e1(f1(ω1))

e2(g2(ω1))

R2

R1

State ω1
q̄

f1(ω2)

f2(ω2) =
e2(f2(ω2))

g2(ω2)

g1(ω2) e1(g1(ω2))

e2(g2(ω2))

e1(f1(ω2))
R1

R1R2

State ω2

c

h

c

h
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PROOF

q̄

e1(g1(ω1))

e2(f2(ω1))

e1(f1(ω1))

e2(g2(ω1))

State ω1
q̄

e2(f2(ω2))

e1(g1(ω2))

e2(g2(ω2))

e1(f1(ω2))

State ω2

c

h

c

h
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PROOF

q̄

e1(g1(ω1))

e2(f2(ω1))

e1(f1(ω1))
e2(g2(ω1))

State ω1
q̄

e2(f2(ω2))

e1(g1(ω2))

e2(g2(ω2))

e1(f1(ω2))

State ω2

ge(ω1)

f e(ω1)

f e(ω2)

ge(ω2)

c

h

c

h

f R g ⇐⇒ f e R ge (Dominance)
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PROOF

q̄
State ω1

q̄
State ω2

ge(ω1)

f e(ω1)

f e(ω2)

ge(ω2)

c

h

c

h

f R g ⇐⇒ f e R ge (Dominance)
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PROOF

q̄

ce2(ge) ce2(f e)

ce1(ge)
ce1(f e)

State ω1
q̄

ce2(ge) ce2(f e)

ce1(ge)
ce1(f e)

State ω2

ge(ω1)

f e(ω1)

f e(ω2)

ge(ω2)

c

h

c

h

f R g ⇐⇒ f e R ge (Dominance)
⇐⇒ ce(f e) R ce(ge) (PENR)
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PROOF

q̄

ce2(ge) ce2(f e)

ce1(ge)
ce1(f e)

c

h

f R g ⇐⇒ f e R ge (Dominance)
⇐⇒ ce(f e) R ce(ge) (PENR)

⇐⇒ ce(f e) R0 ce(ge) (Dominance)
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EX POST CRITERIA: COMMENTS

I Ex post criteria are derived from natural properties:
I Dominance is an appealing axiom of social rationality (cf.

Monotonicity in the MBA model by Cerreia-Vioglio et al.
2011).

I Fleurbaey (2010) proposed Pareto for Equal Risk. Justifica-
tion: situations where individuals have same information as
the society (equal risk).
We strengthen Pareto for Equal Risk to add situations with-
out risk (Pareto ex post).

I Ex post criteria have a three-steps structure:
1. compute EDE in each state of the world;
2. compute certainty-equivalent of the EDEs for all individu-

als;
3. assess the distribution of these certainty-equivalent alloca-

tions using the social ordering for ex post allocations.



INTRODUCTION FRAMEWORK FAIR CRITERIA NON-EU AND BELIEFS VARIABLE POPULATION CONCLUSION

FAIR CRITERIA ARE NOT EXPECTED UTILITIES

The two Propositions characterize criteria that generically are
not expected utilities, even when individuals are expected util-
ity maximizers.

Recall that there exists ui such that for all (ci, hi) ∈ R+ × [0, 1],
ui(ci, hi) = vi

(
ei
(
ci, hi

))
, and

fiRigi ⇐⇒
∫

Ω
ui
(
fi(ω)

)
dp(ω) ≥

∫
Ω

ui
(
gi(ω)

)
dp(ω).

The concavity of vi expresses risk aversion with respect to equiv-
alent consumption.
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AN EXAMPLE

Assume that

xR0y ⇔
(

ei(xi)
)

i∈N
R∗
(

ei(yi)
)

i∈N

⇔
∑
i∈N

ψ
(
ei(xi)

)
≥
∑
i∈N

ψ
(
cei(yi)

)
.

And denote ce(x) the consumption level

ce(x) = ψ−1

(
1
N

∑
i∈N

ψ
(
ei(xi)

))
,

i.e. xe = (ce(x), 1).
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AN EXAMPLE
Then using the Propositions:

I In the ex ante approach:

fRg ⇐⇒
∑
i∈N

ψ ◦ v−1
i

(∫
Ω

vi

(
ei
(
fi(ω)

))
dp(ω)

)
≥

∑
i∈N

ψ ◦ v−1
i

(∫
Ω

vi

(
ei
(
gi(ω)

))
dp(ω)

)
I In the ex post approach:

fRg ⇐⇒
∑
i∈N

ψ ◦ v−1
i

(∫
Ω

vi

(
ce(f (ω)

))
dp(ω)

)
≥

∑
i∈N

ψ ◦ v−1
i

(∫
Ω

vi

(
ce(g(ω)

))
dp(ω)

)
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AN EXAMPLE
The non separability issue can be resolved in the case where ψ
is extremely concave (min), and vi(c) = c1−γi/(1− γi).
Then, in the ex post approach (ex ante is similar):

fRg ⇐⇒ min
i∈N

(∫
Ω

(
min
j∈N

ej
(
fj(ω)

))1−γi

dp(ω)

) 1
1−γi

≥

min
i∈N

(∫
Ω

(
min
j∈N

ej
(
gj(ω)

))1−γi

dp(ω)

) 1
1−γi

⇐⇒ 1
1−γmax

∫
Ω

(
min
j∈N

ej
(
fj(ω)

))1−γmax

dp(ω) ≥

1
1−γmax

∫
Ω

(
min
j∈N

ej
(
gj(ω)

))1−γmax

dp(ω).

where γmax = maxi∈N γi.
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PENR, FAIRNESS AND EXPECTED UTILITY

Domain Restriction: Existence of a more risk averse agent
There exists an individual such that, for any egalitarian act, her
certainty-equivalent is lower than (or equal to) the one of any
other individual.

Axiom: Social Expected Utility

For f , g ∈ F , there exists u : X→ R such that

f � g⇐⇒
∫

Ω
u
(
f (ω)

)
dp(ω) ≥

∫
Ω

u
(
g(ω)

)
dp(ω).

Axiom: Independence of risk attitudes
The ex post social ordering R0 is independent of the vi functions
(it only depends on ordinal information about individual pref-
erences over sure allocations).
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PENR, FAIRNESS AND EXPECTED UTILITY

Proposition
On the domain of preferences satisfying Existence of a more risk
averse agent, R satisfies Pareto for Equal and No Risk, Social
Expected Utility and R0 satisfies Independence of risk attitudes
if and only R0 is maxmin. Thus fRg if and only

E(uk ◦ f e
i ) ≥ E(uk ◦ ge

i ),

where k is the most risk-averse agent
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NON EXPECTED UTILITY AND BELIEFS

I Results of our main Propositions can obviously be extended
to non expected utility models: we only need the existence
of certainty equivalents.

I Problem: individuals may have different beliefs and spuri-
ous unanimities may arise.

I There have been several papers about how beliefs should
be aggregated (Gilboa, Samet Schmeidler, 2004; Qu, 2014;
Danan, Gajdos, Hill, Tallon, 2014).
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MAXIMIN EXPECTED UTILITY

I Assume that all individuals are maxmin utility maximizers:
for all i there exists a set Ci of probabilities over Ω such that:

fi � gi ⇐⇒ min
p∈Ci

∫
Ω

u
(
fi(ω)

)
dp(ω) ≥ min

p∈Ci

∫
Ω

u
(
gi(ω)

)
dp(ω).

I Note that we assume that all individuals have the same
function u.

I In general, it is not clear that the criterion defined in the
Propositions should be a maxmin expected utility.

I Social preferences will define how beliefs should be aggre-
gated.
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THE MIN MAXIMIN EXPECTED UTILITY

I If R0 is a maxmin, the obtain the following criterion:

f � g ⇐⇒ min
i∈N

(
min
p∈Ci

∫
Ω

u
(

min
j∈N

cej
(
fj(ω)

))
dp(ω)

)
≥

min
i∈N

(
min
p∈Ci

∫
Ω

u
(

min
j∈N

cej
(
gj(ω)

))
dp(ω)

)
I This is equivalent to

f � g⇐⇒ min
p∈C

∫
Ω

u
(
f (ω)

)
dp(ω) ≥ min

p∈C

∫
Ω

u
(
gi(ω)

)
dp(ω),

where C = ∪i∈NCi.

I The social ordering exhibits more aversion to uncertainty
than individual preferences.
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FRAMEWORK

I Two goods: market good c ∈ R+ and non-market good q ∈
[0, 1].
A bundle for individual i is xi = (ci, qi).

I Set of potential individuals is N. In any particular alter-
native, a subset N of individuals exist. An allocation is
x ∈ X =

⋃
N (R+ × [0, 1])N .

I Uncertainty: Savage framework.
I ω ∈ Ω: state of the world. A a sigma-algebra on Ω. A ∈ A

an event.
I f : Ω→ X , a prospect (simple act). F the set of prospects.
I x ∈ X , a sure prospect.

I For any x ∈ X ,N (x) the set of individuals alive, and n(x) =
|N (x)|. Similarly, for any f ∈ F , for any ω ∈ Ω, we can
define N (f (ω)) and n(f (ω)).



INTRODUCTION FRAMEWORK FAIR CRITERIA NON-EU AND BELIEFS VARIABLE POPULATION CONCLUSION

INDIVIDUAL PREFERENCES

Each individual i has preferences satisfying the following con-
ditions:

I Preferences are represented by a complete preorder �i over⋃
A∈A

(
R2

+

)A
.

I For any f ∈ F , let Ai(f ) = {ω|i ∈ N (f (ω))}, and fi a mapping
from Ai to R+ × [0, 1] assigning to i her allocation in ω ∈ Ai
according to act f . Also denote pi(f ) = p(Ai(f )).

I There exists a continuous, increasing and quasi-concave func-
tion ui : R+ × [0, 1]→ R such that:

fi �i gi ⇐⇒ EA
(
ui(fi)

)
≥ EA

(
ui(gi)

)
.

I For some q̄, and for any xi = (ci, qi) there exists z ∈ R+ such
that ui(z, q̄) = ui(ci, qi).
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EX ANTE APPROACH: AXIOMS

1. Pareto

2. Anonymous Pigou-Dalton

3. Existence independence

4. Restricted expected utility

5. Replacement



INTRODUCTION FRAMEWORK FAIR CRITERIA NON-EU AND BELIEFS VARIABLE POPULATION CONCLUSION

EX ANTE APPROACH: RESULT

Proposition
If the social ordering satisfies Pareto, Anonymous Pigou-Dalton,
Existence independence, Restricted expected utility and Re-
placement, then there exists α ∈ R and an increasing continuous
and concave function φ : R+ → R such that for all f , g ∈ F :

f R g⇐⇒
∑
i∈N

pi(f )
[
φ
(
cei(fi)

)
− α

]
≥
∑
i∈N

pi(g)
[
φ
(
cei(gi)

)
− α

]
.
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EX POST APPROACH: AXIOMS

1. Pareto for no risk

2. Pareto for equal risk

3. Anonymous Pigou-Dalton

4. Separability for sure prospects

5. Social Expected Utility Hypothesis
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EX POST APPROACH: RESULT

Proposition
If the social ordering satisfies Pareto for no risk, Pareto for
equal risk, Anonymous Pigou-Dalton, Independence for sure
prospects and Expected utility and Replacement, then there ex-
ists an increasing continuous and concave function φ : R+ → R
and for each N a vector of scalars (αNi )i∈N such that for all
f , g ∈ F :

f R g ⇐⇒ E

 ∑
i∈N (f )

α
N (f )
i vi ◦ φ−1

 1
n(f )

∑
i∈N (f )

φ
(
ei(fi)

)
≥ E

 ∑
i∈N (g)

α
N (g)
i vi ◦ φ−1

 1
n(g)

∑
i∈N (g)

φ
(
ei(gi)

) .
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CONCLUSION
I We have developed fairness methods for analyzing economic

policy in the case of uncertainty, including uncertainty about
future preferences:

I Ex ante approaches take concave transformations of certainty
equivalent consumption (weighted by people probability of
existence.)

I Ex post approaches are expected values of equally distributed
equivalent consumptions.

I The methods provide an explicit methodology for measur-
ing and comparing welfare. They take different paths re-
garding when individual welfare should be aggregated.

I The social criteria are not necessarily expected utilities (and
it is not always straightforward to link them to existing de-
cision models). But there are interesting special cases (in
particular maxmin cases).
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FURTHER QUESTIONS / FUTURE DIRECTIONS

I How should we aggregate beliefs? Not clear, because our
framework is different from most recent works on the topic,
which use the Anscombe-Aumann framework and there-
fore linear aggregation under certainty (Cres, Gilboa and
Vieille, 2011; Qu, 2014, Danan, Gajdos, Hill and Tallon, 2014).

I How should we normalize the risk functions vi in the ex
post approach? How should we choose the associated weights?

I Population ethics: our criteria do not avoid all issues (Re-
pugnant Conclusion, Reverse Repugnant Conclusion, Sadis-
tic Conclusion...).



AXIOMS

PARETO

Axiom: Pareto
For all x,y ∈ X, if xi �i yi for all i ∈ N , then x � y. If furthermore
there exists j ∈ N such that xj �j yj, then x � y.



AXIOMS

ANONYMOUS PIGOU-DALTON

Axiom: Anonymous Pigou-Dalton

For all x, y ∈ X̄ such that n(x) = n(y), if there exists a bijection
π : N (x)→ N (y), i, j ∈ N (x) and ε > 0 such that

1. y1
π(i) + ε = x1

i ≤ x1
j = v1

π(j) − ε;
2. xk = yπ(k) for all k ∈ (N (x) \ {i, j}),

then x � y.



AXIOMS

EXISTENCE INDEPENDENCE

Axiom: Existence Independence
For allM∈ N, for all x, x̃,y, ỹ ∈ X , if
Si(x) = Si(y) and Si(x̃) = Si(ỹ) = ∅ for all i ∈M,
Si(x) = Si(x̃) and Si(y) = Si(ỹ) for all i ∈ N \M,
xi(s) = yi(s) for all i ∈M and s ∈ Si(x),
xj(s) = x̃j(s) for all j ∈ N \M and s ∈ Sj(x),
yj(s) = ỹj(s) for all j ∈ N \M and s ∈ Sj(x),
then x � y⇐⇒ x̃ � ỹ.



AXIOMS

RESTRICTED EXPECTED UTILITY

Axiom: Restricted Expected Utility

There exists a continuous function Ũ : X → R such that, for
all x,y ∈ X, if there exists two partitions of S (A1, · · · ,Am) and
(B1, · · · ,Bn) such that x(s) = x(s′) for all s, s′ ∈ Al (l = 1, · · · ,m),
y(s) = y(s′) for all s, s′ ∈ Bk (k = 1, · · · ,n),N (x(s))∩N (x(s′)) = ∅
for all s ∈ Al and s′ ∈ Ak, l 6= k, and N (y(s)) ∩ N (y(s′)) = ∅ for
all s ∈ Bl and s′ ∈ Bk, l 6= k:

xRy⇐⇒ E
(
Ũ(x)

)
≥ E

(
Ũ(y)

)



AXIOMS

REPLACEMENT

Replacement
For all x,y ∈ X, if there exist i, j, h ∈ N such that:

I for all r ∈ N \ {i, j, h}, xr(s) = yr(s) for all s ∈ Ar;

I Sh(x) = ∅ and Si(y) = Sj(y) = ∅;
I there exists z ∈ R+ such that xi(s) = (z, x̄2) for all s ∈ Si(x),

xj(s) = (z, x̄2) for all s ∈ Sj(x), and xh(s) = (z, x̄2) for all
s ∈ Sh(y);

I ph(y) = pi(x) + pj(x);

then xIy.



AXIOMS

PARETO FOR NO RISK

Axiom: Pareto for no risk
For all x, y ∈ X if N (x) = N (y) = N and xi �i yi for all i ∈ N
then x � y. If furthermore xj �j yj for some j ∈ N then x � y.



AXIOMS

PARETO FOR EQUAL RISK

Axiom: Pareto for equal risk

For all x,y ∈ X̄, if there exists A ⊂ S and N ∈ N such that
N(x(s)) = N(y(s)) = N for all s ∈ A, N(x(s)) = N(y(s)) 6= N for
all s ∈ S \ A, and:

I for all i, j ∈ N , xi(s) = xj(s) and yi(s) = yj(s) for all s ∈ A;
I x(s) = y(s) for all s ∈ S \ A;

and if for all i ∈ N , EA
(
ui(xi)

)
≥ EA

(
ui(yi)

)
then x � y. If

furthermore EA
(
uj(xj)

)
> EA

(
uj(yj)

)
for some j ∈ N , then x � y.



AXIOMS

SEPARABILITY FOR SURE PROSPECTS

Axiom: Separability for sure prospects
For all M,N ∈ N such that M ⊂ N , for all x, x̃, y, ỹ ∈ X , if
N (x) = N (y) = N , N (x̃) = N (ỹ) =M and
xi = yi for all i ∈ N \M,
xj = x̃j for all j ∈M,
yj = ỹj for all j ∈M,
then x � y⇐⇒ x̃ � ỹ.



AXIOMS

SOCIAL EXPECTED UTILITY HYPOTHESIS

Axiom: Social Expected Utility Hypothesis
There exists a continuous function U : X → R such that, for all
x,y ∈ X:

x � y⇐⇒ E
(
U(x)

)
≥ E

(
U(y)

)
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