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Abstract. We prove empirical central limit theorems (CLT) for extreme val-
ues cluster functionals empirical processes in the sense of the tough paper Drees
and Rootzén (2010). Contrary to those authors we dont restrict to β−mixing
samples. For this we use coupling properties enlightened for Dedecker & Prieur’s
τ−dependence coefficients. We also explicit the asymptotic behavior of specific clus-
ters. As an example we develop the number of excesses; it gives a complete example
of a cluster functional for a non-mixing “reasonable model” (an AR(1)-process) for
which results such as ours are definitely needed. In particular the expression of the
limit Gaussian process is developed. Also we include in this paper some results of
Drees (2011) for the extremal index and some simulations for this index to demon-
strate the accuracy of this technique.

Keywords and phrases: Extremes, clustering of extremes, cluster func-
tional of extremes, extremal index, uniform central limit theorem, τ -
weak dependence, tail empirical process.

1. Introduction

We use the scheme in [Segers, 2003] and in [Drees & Rootzén, 2010] for defining
clusters functionals. Let d > 1, the set E ⊂ Rd is measurable (E ∈ B(Rd)) and 0 ∈ E.
Let us consider E-valued normalized random variables (Xn,i)16i6n,n∈N, defined on
some probability space (Ω,A,P), which are row-wise stationary, that is (Xn,i)16i6n is
stationary for each n ∈ N. Those normalized random variables Xn,i, are built from
another random process (Xj)j∈N, in such a way that the normalization maps all non-
extreme values to zero. Additionally, it should satisfy that the sequence of conditional
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distributions of Xn,i given that Xn,i 6= 0 (i.e. P n(x) = P{Xn,i > x|Xn,i 6= 0})
converge weakly to some non-degenerate limit.

For real-valued random variables a typical normalization is as follows. Let (Xi)i∈N
be a stationary process in R with marginal cumulative distribution function F , and
let (un)n∈N be an increasing sequence of thresholds such that un ↑ xF with

xF = sup{x ∈ R : F (x) < 1}, vn := P{X1 > un} −→
n→∞

0.

It is clear that, for each x > 0, the tail distribution function for Xi:

P n(x) = P{Xi − un > x|Xi > un}

is degenerated as n→∞ (asymptotically this is a Dirac distribution). The following
normalization is often used:

Xn,i =

(
Xi − un
an

)
+

= max

{
Xi − un
an

, 0

}
, for 1 6 i 6 n,(1.1)

here (an)n∈N is a sequence of positive norming constants, depending on un. Moreover
for this case the sequence of cumulative distributions P n(x) = P{Xn,i > x|Xi > un}
converges to a Pareto distribution for x > 0, see Section 4 of [Segers, 2003].

If the process (Xi)i∈N is Rd−valued (d ≥ 1) then two applications write with:

Xn,i =

(
‖Xi‖ − un

an

)
+

, for 1 6 i 6 n,(1.2)

Xn,i =

((
X1i − un

an

)
+

,

(
X2i − un

an

)
+

, . . . ,

(
Xdi − un

an

)
+

)
,(1.3)

for some norm ‖ · ‖ on the Euclidean space Rd Xi = (X1i, X2i, . . . , Xdi) and (un)n∈N,
(an)n∈N are defined as in eqn. (1.1). This could be interpreted as follows: we suppose
that Xi is a vector of a cycle of d records per unit time i (for example, i is the i-

th day and d = 24, hours per day). In particular if ‖Xi‖ := ‖Xi‖1 =
∑d

j=1 |Xij|
then the expression in eqn. (1.2) is non-zero if the sum of the records exceeds the
threshold un and for (1.3) Xn,i this is the vector of excesses over a threshold un for
each coordinate. Section 3 in [Drees & Rootzén, 2010] gives another example of a
normalization of d consecutive excesses of real random variables (Xi)i∈N i.e.

Xn,i =

((
Xi − un
an

)
+

,

(
Xi+1 − un

an

)
+

, . . . ,

(
Xi+d−1 − un

an

)
+

)
.(1.4)

Note that this example is interesting because it takes into account d consecutive ex-
treme values, which contains useful information on the extremal dependence struc-
ture. That is is a general feature for many real applications. Namely:



EMPIRICAL CLT FOR CLUSTER FUNCTIONALS UNDER WEAK DEPENDENCE∗ 3

(1) if d consecutive days of rain are observed in a given city, the volume of precip-
itated water may be larger than the volume of water that can be drained (through
sewers, soil, rivers, etc.),
(2) If d very large claims are reported to an insurance company in a very small time
interval (with respect to typical cases) this can be a risk with respect to the response
capacity of the insurance company, and
(3) If d consecutive days of low temperatures a observed in a given city, then the
power consumption (due to heating, etc.) endangers the response capacity of the
company in charge of the energy distribution.

On the order hand, a typical example of a empirical process of extreme values
cluster functionals is the tail empirical process:

Tn(x) =
1
√
nvn

n∑
i=1

(
1{Xn,i > x} − P(Xn,1 > x)

)
, x > 0,(1.5)

with Xn,i defined as in (1.1). This process has beed considerd by Drees and Rootzén
under certain conditions (in particular for α and β-mixing conditions) they prove its
uniform convergence to a Gaussian process T under additional conditions.
For example they prove the convergence of this tail empirical process for the cases
of k-dependent sequences or stable AR(1)-processes [Rootzén, 1995], and ARCH(1)-
processes [Drees, 2002, Drees, 2003] and applications for solutions of stochastic dif-
ference equations [Drees, 2000, Drees, 2002, Drees, 2003]. They use the extreme
cluster functionals setting in [Segers, 2003] to generalize such empirical processes
under β-mixing in [Drees & Rootzén, 2010].

However, note that the AR(1)-process, solution of the recursion:

Xk =
1

b

(
Xk−1 + ξk

)
, k ∈ Z,(1.6)

where b > 2 is an integer and (ξk)k∈N are independent and uniformly distributed
random variables on the set {0, 1, . . . , b− 1} is not even α−mixing, as this is shown
in [Andrews, 1984] for b = 2 and in [Ango Nze & Doukhan, 2004] for b > 2. The
results in [Drees & Rootzén, 2010] can thus not be used here! This is thus use-
ful to improve on the CLT for empirical processes of extreme cluster functionals
proposed by [Drees & Rootzén, 2010] for more general classes of weakly dependent
processes. Here we make use of the coupling results of [Dedecker & Prieur, 2004a,
Dedecker & Prieur, 2005] under τ -dependence assumptions.

This paper is organized as follows. In Section 2, we recall basic definitions and
notations for cluster functionals and for the empirical process of cluster functionals.
In Section 3 we define the τ -weak dependence coefficients and then Section 4 is
concerned with the assumption to derive our main functional CLT for the cluster
empirical process; namely asymptotic tightness, asymptotic equicontinuity and the
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assumptions to obtain a fidi CLT for empirical processes of cluster functionals. Those
results are shown in Section 5. In Section 6 we develop a example similar to (1.5) for
the multidimensional case for the case of AR(1)-inputs. Also a simulation study for
the extremal index to demonstrate the accuracy of this technique. The proofs are
reported in a last section.

2. Empirical Process of Cluster Functionals

As it was mentioned in the introduction, we consider a triangular array of row-
wise stationary random variables (Xn,i)16i6n,n∈N with normalized marginals taking
its values in a measurable subset E of (Rd,B(Rd)) and defined on the probability
space (Ω,A,P).

Before defining the “empirical process of cluster functionals”, we first define a
cluster functional. The following definition is due to [Yun, 2000] and [Segers, 2003]
for the univariate case, and to [Drees & Rootzén, 2010] for the more general multi-
dimensional case:

Definition 2.1 (Cluster Functional, [Drees & Rootzén, 2010]).

• We define the set of finite-length sequences with values in E:

E∪ :=
⋃
r∈N

Er

equipped with the σ-field E∪ induced by Borel-σ-fields on Er, for r ∈ N.
• For r ∈ N, let Y = (X1, X2, . . . , Xr) ∈ Er ⊂ (Rd)r. The core Y c ∈ E∪ of Y

is defined by

Y c =

{
(Xl)r16l6r2 , if Y 6= 0r (the null element in Rr)
0, otherwise

here r1 := min{i ∈ {1, . . . , r} : Xi 6= 0} (first extreme value of the block Y )
and r2 := max{i ∈ {1, . . . , r} : Xi 6= 0} (last extreme value of the block Y ).
• A measurable map f : (E∪, E∪) −→ (R,B(R)) is called a cluster functional

if

f(Y ) = f(Y c), for all Y ∈ E∪, and f(0r) = 0 (∀r > 1).

Remark 1. Note that the cluster map Y 7−→ Y c (defined in [Segers, 2003]) is not
only a functional dependent on the extreme values set of the block, but it also depends
on the null values set between the first and last extreme value of the block, i.e. the
cluster is really the smallest sub-block Y c containing all extreme values of the block
and including also all the non-extreme values in-between, e.g. f(0, 1, 1, 0, 0, 1, 0, 0) =
f(1, 1, 0, 0, 1).
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Example 2.1. Consider the following notation. If u = (u1, . . . , ud), v = (v1, . . . , vd)
are vectors in Rd say that u ≤ v if and only if ui ≤ vi for all i = 1, . . . , d. So, if
E = Rd and x ∈ T ⊂ E, we have the following list of cluster functionals:

(2.1.1) Sum of excesses over x:

fx(x1, . . . , xr) =
r∑
i=1

(xi − x)1{xi > x},

(2.1.2) Number of excesses over x:

fx(x1, . . . , xr) =
r∑
i=1

1{xi > x}.

Usually if φ : (E, E) −→ (R,B(R)) denotes a function such that φ(0) = 0 then

fφ(x1, . . . , xr) =
r∑
i=1

φ(xi)(2.7)

is a cluster functional.

(2.1.3) Maximal excess over x:

fx(x1, . . . , xr) = max{(x1 − x)+, . . . , (xr − x)+},
where (y − x)+ := ‖y − x‖1{y > x};

(2.1.4) Number of up-crossings at x:

fx(x1, . . . , xr) = 1{x1 > x}+ 1{x1 < x, x2 > x}+ · · ·+ 1{xr−1 < x, xr > 0}.

Example 2.2. For E = R+ and x > 0,

(2.2.5) Balanced periods(3) over x,

fx(x1, . . . , xr) = 1

{
r∑
i=1

(xi − x)1{xi > 0} = 0

}
.

Example 2.3. We consider E = R+. If for each p, q ∈ {1, 2, . . . , r}, we denote
Hp,q = {xp, xp+1, . . . , xq} ⊆ {x1, . . . , xr} such that y > 0, ∀y ∈ Hp,q. Then we can
define the following functional:

(2.3.6) Maximum sum (greater than the level u > 0) of consecutive excesses over x,

fx,u(x1, . . . , xr) = max
16p<q6r

∑
y∈Hp,q

(y − x)+1

 ∑
y∈Hp,q

(y − x)+ > u

 ,

3 In particular, many thanks are to Didier Dacunha-Castelle for managing electric consumptions
questions, this functional is of an important use for electricity production problems.
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Example 2.4. Let (E, d) be a metric space. If γi : E −→ Rd such that γi(0) = 0 for
i ∈ {1, . . . , r}, we define functionals gx : E∪ −→ R for x ∈ T as the previous cases:

gx(x1, . . . , xr) = fx(γ1(x1), . . . , γr(xr)),

where fx is any functional of the above list (2.1.1) - (2.3.6).

For applications’s sake we expect that cluster functionals f(·) to satisfy:

(1) their domain is a vector of arbitrary length, with at least one non-zero com-
ponent;

(2) it depends only on the extreme values and on the occurrence of non-extreme
values in between two extreme values of the vector.

Remark 2. Note that the three first previous examples ((2.1.1)-(2.1.3)) satisfy the
property of “invariance under permutations” i.e.:

f(x1, . . . , xr) = f(xσ(1), . . . , xσ(r)),

for any permutation σ : {1, . . . , r} −→ {1, . . . , r}.
Therefore, these functionals (neither any cluster functional) will not give any infor-
mation about the positions of the extreme values cluster.

Definition 2.2 (Empirical Process of Cluster Functionals [Drees & Rootzén, 2010]).

(1) We define Yn,j as the j-th block of rn consecutive values of the n-th row of
(Xn,i). Thus there are mn := [n/rn] = max{j ∈ N : j 6 n/rn} blocks

Yn,j := (Xn,i)(j−1)rn+16i6jrn for 1 6 j 6 mn(2.8)

of length rn. Since (Xn,i)16i6n is stationary for each n, then we can denote
by Yn to the “generic block” such that

Yn
D
= Yn,1.(2.9)

Moreover the block-length rn tends to infinity in such way that rn � n.
(2) We denote by F a class of “cluster functionals”.

Then the “empirical process Zn of cluster functionals” is the process
(Zn(f))f∈F defined by

Zn(f) :=
1
√
nvn

mn∑
j=1

(f(Yn,j)− Ef(Yn,j)),(2.10)

where vn := P{Xn,1 6= 0} −→ 0.

Drees and Rootzén [Drees & Rootzén, 2010] have proved CLTs for this process.
In particular, they have proved a CLT for the Fidis of (Zn(f))f∈F by using the
Bernstein blocks technique together with a β-mixing coupling condition to boil down
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convergence to convergence of sums over i.i.d. blocks through [Eberlein, 1984]’s
technique involving the metric of total variation. [Drees & Rootzén, 2010] prove
an uniform CLT by using [Van Der Vaart & Wellner, 1996]’s tightness criteria and
asymptotic equicontinuity conditions together with a fidi CLT.

We aim at extending their CLT’s for the empirical process (Zn(f))f∈F , since the
family of mixing processes is still very restrictive. One particular and really simple
example of a non-mixing process is the AR(1)-process (1.6). We derive the same
results as in [Drees & Rootzén, 2010] and some applications as in [Drees, 2011] under
much weaker dependence conditions including eg. this example.
The τ−weak dependence introduced by [Dedecker & Prieur, 2004a] holds for the
Example in eqn. (1.6), as well as more generally for Bernoulli shifts processes and
Markov chains.

3. τ-weak dependence [Dedecker & Prieur, 2004a]

Definition 3.1. Let (Ω,A,P) be a probability space, and M a σ-algebra of A. Let
(E, δ) be a Polish space endowed with its metric. For any E-valued random variable

X ∈ Lp (i.e. X satisfies ‖X‖p := (E|X|p)1/p <∞) Dedecker and Prieur defined the
coefficient τp as:

τp(M, X) := ‖ sup {E [h(X)|M]− E [h(X)] : h ∈ Λ(E, δ)} ‖p(3.11)

where Λ(E, δ) denotes the class of all Lipschitz functions h : E −→ R such that

Lip(h) := sup
x 6=y
|h(x)− h(y)|/δ(x, y) 6 1.

Let X = (Xn,i)16i6n,n∈N be a triangular array of Lp-integrable E-valued random vari-
ables, and (Mi)i∈Z be a sequence of σ-algebras of A.
Then, for any n ∈ N Dedecker and Prieur defined the coefficient:

τp,n(k) := sup
l>1

l−1 sup{τp(Mi, (Xn,j1 , . . . , Xn,jl)) : i+ k 6 j1 < · · · < jl 6 n},(3.12)

where we consider the distance δl(x, y) =
∑l

i=1 δ(xi, yi) on El. Moreover, we say that
X is τp-weakly dependent if

lim
k−→∞

lim sup
n−→∞

τp,n(k) = 0.(3.13)

Example 3.1 (Causal Bernoulli shifts). Let (ξi)i∈Z be a sequence of i.i.d.r.v’s. (in-
dependent and identically distributed random variables) with values in a measur-
able space D. Assume that there exists a function H : DN −→ R, such that
H(ξ0, ξ−1, . . .) is defined almost surely. Then the stationary sequence (Xi)i>0 de-
fined by Xi = H(ξi, ξi−1, . . .) is called a causal Bernoulli shifts.
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Let (ξ′i)i∈Z be an independent copy of the i.i.d. sequence (ξi)i∈Z. Consider a non-
increasing sequence (∆p,n(i))i>0, such that

∆p,n(i) > ‖Xn,i −X ′n,i‖p,(3.14)

for some p ∈ [1,∞], where Xn,i and X ′n,i denote the extreme normalizations of
Xi = H(ξi, ξi−1, . . .) and X ′i = H(ξi, . . . , ξ1, ξ

′
0, ξ
′
−1, . . .), respectively.

If Mi = σ(Xj : j 6 i), then the coefficient τ1,n of (Xn,i)16i6n is bounded above by
∆1,n.

In particular, if the triangular array (Xn,i)16i6n,n∈N, is defined as in (1.4) and if
we consider a decreasing sequence (δp,i)i>0 such that

‖H(ξi, ξi−1, . . .)−H(ξi, . . . , ξ1, ξ
′
0, ξ
′
−1, . . .)‖p 6 δp,i(3.15)

for p ∈ [1,∞]. Then, τ1,n(k) is bounded by

∆̃n(k) :=
d

an

(
δp,kv

1/q
n + 2δ∞,kP{0 < X0 − un 6 δ∞,k}

)
,(3.16)

where p, q ∈ [1,∞] such that p−1 + q−1 = 1.

Remark 3. If there exists positive real constants C, λ, α such that

sup
x∈R

P(x 6 X0 6 x+ λ) 6 Cλα,(3.17)

then

∆̃n(k) 6
d

an

(
δp,kv

1/q
n + 2Cδ1+α∞,k

)
6

d

an
δ∞,k

(
vn + 2Cδα∞,k

)
.(3.18)

Application 1 (Causal linear processes). Let D = R and

Xi =
∞∑
j=0

bjξi−j.

Here we set δ′p,i = 2‖ξ0‖p
∑

j>i |bj| > δp,i in case ‖ξ0‖p <∞.

The model (1.6) writes with bj = b−j−1 for some integer b > 2 and ξ0 uniformly
distributed on {0, . . . , b− 1}; in this case X0 is uniformly distributed over [0, 1] and
δ∞,i 6 b−i.

Example 3.2 (Markov models). Let G : (Rl,B(Rl)) × (D,D) −→ (R,B(R)) be a
measurable function and let (Xi)i>1−l be a sequence of random variables with values
in R such that

Xi = G(Xi−1, Xi−2, . . . , Xi−l; ξi), ∀i > 1,(3.19)
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for some sequence (ξi)i∈N of i.i.d.r.v’s. with values in a measurable space D and in-
dependent of (X0, . . . , X1−l). Then the random variables Yi = (Xi, Xi−1, . . . , Xi−l+1)
defines a Markov chain such that Yi = F (Yi−1; ξi) with

F (xl, . . . , x1; ξ) := (G(xl, . . . , x1; ξ), xl, xl−1, . . . , x2).(3.20)

Assume that Y0 = (X0, . . . , X1−l) is a stationary solution of (3.19). Let Y ′0 =
(X ′0, . . . , X

′
1−l) be independent of (Y0, (ξi)i∈N) and distributed as Y0. Then setting

X ′i = G(X ′i−1, . . . , X
′
i−l; ξi),(3.21)

X ′i is distributed as Xi and it is independent of M0 = σ(X0, . . . , X1−l), for all
i ∈ N. As for the latter example, let (∆p,n(i))i>0 be a non increasing sequence such
that (3.14) holds, where Xn,i and X ′n,i are the normalizations of Xi and X ′i defined
in (3.19) and (3.21), respectively. Hence one can apply the result of Lemma 3 in
[Dedecker & Prieur, 2004a], and we obtain that τ1,n(k) 6 ∆1,n(k).

Analogously to the latter example if (δp,i)i>0 is a decreasing sequence such that

δp,i > ‖Xi − X ′i‖p and if we consider the normalization (1.4) then τ1,n(k) 6 ∆̃n(k)

with ∆̃n defined in (3.16).
In particular if G is such that

‖G(x; ξ1)−G(y; ξ1)‖p 6
l∑

i=1

ai|xi − yi|, with
l∑

i=1

ai < 1,(3.22)

then δp,i 6 Cai for some a ∈ [0, 1) and C > 0. (see [Dedecker et al., 2007], page 34).

Application 2 (Contracting Markov chain). Let Xi = G(Xi−1, ξi) be a Markov
chain such that G : (R,B(R))× (D,D) −→ (R,B(R)) is a measurable function and

A = ‖G(0; ξ1)‖p <∞ and ‖G(x; ξ1)−G(y; ξ1)‖p 6 a|x− y|,(3.23)

for some a ∈ (0, 1) and p ∈ [1,∞]. Then, (Xi)i∈N has a stationary solution with p-th
order finite moment as this is proved on page 35 of [Dedecker et al., 2007]. Moreover
under this condition: δp,i = ‖X ′0 −X0‖p · ai.
Remark 4. Note that in particular if G(u; ξ) = A(u) +B(u)ξ for suitable Lipschitz
functions A(u) and B(u) with u ∈ R then the corresponding iterative model (ARCH-
type process) Xi = G(Xi−1; ξi) satisfies (3.23) with a = Lip(A) + ‖ξ1‖pLip(B) < 1.

Remark 5. Note that the stationary iterative models Xi = G(Xi−1, ξi) are causal
Bernoulli shifts if the condition (3.23) holds; this is proved in Proposition 3.2 in
[Dedecker et al., 2007].

Application 3 (Nonlinear AR(l)-models). Let l ≥ 1 and (Xi)i be the stationary
solution of some equation

Xi = R(Xi−1, . . . , Xi−l) + ξi
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for some measurable function R : Rl → R. The process (Xi)i is then called a sta-
tionary real nonlinear autoregressive model of order l. If ‖ξ1‖p <∞ and

|R(u1, . . . , ul)−R(v1, . . . , vl)| 6
l∑

i=1

ai|ui − vi|, for a1, . . . , al > 0 with
l∑

i=1

ai < 1,

and for all (u1, . . . , ul), (v1, . . . , vl) ∈ Rl then the function G : Rl+1 → R by G(u; ξ) =
R(u) + ξ satisfies Condition (3.22) and therefore the sequence (δp,i)i admits an ex-
ponential decay rate.

4. Assumptions

This section addresses the assumptions useful to derive a FCLT for the Empirical
cluster process.

4.1. Fidi convergence conditions. The technique used to prove the convergence
of the empirical process (2.10) is the Bernstein blocks technique. To do this, we need
to extract of each block Yn,j of length rn a sub-block of length ln such that ln = o(rn),
and combine this with suitable hypothesis on τ−dependence.
Thus precisely (Xn,i)16i6n,n∈N is row-wise stationary such that

(B.1) ln � rn � v−1n � n with ln −→∞ and nvn −→∞ as n→∞.
(B.2) τ1,n(ln) = o(r−1n ) and E(‖Xn,1‖ |Xn,1 6= 0) <∞.

It is necessary consider the following notations used all over this paper.

Notation 1. Let Y = (X1, X2, . . . , Xr). We will use the notation Y (l:k) as follows

Y (l:k) =

 0, if r < l,
(Xl, . . . , Xk), if 1 6 l 6 k 6 r,
Y, if k > r.

and Y (k) := Y (1:k). Moreover, if f ∈ F is a cluster functional, then we denote

∆n(f) := f(Yn)− f(Y (rn−ln)
n ),(4.24)

where rn is the length of the block Yn such that ln � rn.

To prove CLT’s for the fidis of the cluster functionals empirical process (Zn(f))f∈F
as (2.10) with rn � v−1n � n, we should take in account the following essential
convergence assumptions:

(C.1) For all f ∈ F ,

E|∆n(f)− E∆n(f)|21 {|∆n(f)− E∆n(f)| 6
√
nvn} =o(rnvn)

P {|∆n(f)− E∆n(f)| >
√
nvn} =o(rn/vn),
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(C.2) E
[
(f(Yn)− Ef(Yn))2 1

{
|f(Yn)− Ef(Yn)| > ε

√
nvn
}]

= o(rnvn),
for all ε > 0, and for all f ∈ F .

(C.3) (rnvn)−1Cov (f(Yn), g(Yn)) −→ c(f, g), for all f, g ∈ F .

Remark 6. Note that Assumptions (C.1) and (C.2) are difficult to check in gen-
eral, for that reason, consider the following (more restrictive but easier to verify)
alternatives conditios:

(A.1) Var(∆n(f)) = o(rnvn) for all f ∈ F .
(A.2) E(f(Yn))2+δ = O(rnvn) for some δ > 0 and for all f ∈ F .

Lemma 1. The conditions (A.1) and (A.2) implies the conditions (C.1) and (C.2),
respectively.

4.2. Tools for uniform convergence. To prove uniform convergence, we use either
asymptotic tightness of Zn in the space `∞(F), or asymptotic equicontinuity condi-
tions, by some results in § 2.11 of [Van Der Vaart & Wellner, 1996]. Those results
need independence therefore a argument of coupling for the blocks (Yn,j)16j6mn,n∈N
is used. [Dedecker & Prieur, 2004a] and Chapter 5 from [Dedecker et al., 2007] yield
a suitable coupling argument under τ -weak dependence.

4.2.1. Asymptotic tightness.

Definition 4.1. The sequence (Zn)n∈N is asymptotically tight if for every ε > 0 there
exists a compact set K ∈ `∞(F) such that

lim sup
n−→∞

P∗(Zn /∈ Kδ) < ε, for every δ > 0,

where Kδ = {f ∈ `∞(F) : dF(f,K) < δ} is the “δ−enlargement” around K and P∗
denotes the outer probability.

Definition 4.2. The bracketing number N[·](ε,F , Ln2 ) is defined as the smallest num-
ber Nε such that for each n ∈ N there exits a partition (F εn,k)16k6Nε of F such that

E∗ sup
f,g∈Fεn,k

(f(Yn)− g(Yn))2 6 ε2rnvn, for 1 6 k 6 Nε,

where E∗ denotes the outer expectation.

In order to use Theorem 2.11.9 in [Van Der Vaart & Wellner, 1996] we need:

(T.1) The set F of cluster functionals is such that for each f ∈ F the expression
Ef 2(Yn) is finite for all n ∈ N and such that the envelope function satisfies:

F (x) := sup
f∈F
|f(x)| <∞, ∀x ∈ E∪.

(T.2) E∗
(
F (Yn)1{F (Yn) > ε

√
nvn}

)
= o(rn

√
vn/n) for all ε > 0.
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Note that for a sequence of monotonically increasing positive functions (hn(δ))n>1
the convergence of hn(δn) to zero ∀δn ↓ 0 is equivalent to

lim
δ↓0

lim sup
n−→∞

hn(δ) = 0,

thus the Assumptions 2 and 3 of Theorem 2.11.9 from [Van Der Vaart & Wellner, 1996]
are reformulated as follows:

(T.3) There exists a semi-metric ρ on F such that F is totally bounded with respect
to (w.r.t.) ρ and

lim
δ↓0

lim sup
n−→∞

sup
f,g∈ρ(f,g)<δ

1

rnvn
E (f(Yn)− g(Yn))2 = 0.

(T.4)

lim
δ↓0

lim sup
n−→∞

∫ δ

0

√
logN[·](ε,F , Ln2 )dε = 0.

4.2.2. Asymptotic equicontinuity.

Definition 4.3. The sequence (Zn)n∈N is asymptotically equicontinuous with respect
to a semi-metric ρ if for any ε > 0 and η > 0 there exists some δ > 0 such that:

lim sup
n−→∞

P∗
(

sup
f,g∈F :ρ(f,g)<δ

|Zn(f)− Zn(g)| > ε

)
< η.

We use Theorem 2.11.1 in [Van Der Vaart & Wellner, 1996] to prove asymptotic
equicontinuity. For this, we define the semi-metric ρn on F as follows. Let (Y ∗n,j)16j6mn
be the independent blocks coupled to the original blocks (Yn,j)16j6mn .
We define ρn as:

ρn(f, g) :=

√√√√ 1

nvn

mn∑
j=1

(f(Y ∗n,j)− g(Y ∗n,j))
2.(4.25)

So we denote by N(ε,F , ρ) the “covering number”, the minimum number of balls
(with respect to the semi-metric ρ) with radius ε > 0 necessary to cover F . We need
the following assumptions:

(T.4’) For k = 1, 2 the map

(Y ∗n,1, . . . , Y
∗
n,[mn/2]) 7−→ sup

f,g∈F :ρ(f,g)<δ

[mn/2]∑
j=1

ej
(
f(Y ∗n,j)− g(Y ∗n,j)

)k
is measurable for each δ > 0 each vector (e1, . . . , e[mn/2]) ∈ {−1, 0, 1}[mn/2]
and each n ∈ N.
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(T.5)

lim
δ↓0

lim sup
n−→∞

P∗
(∫ δ

0

√
logN(ε,F , ρn)dε > ξ

)
= 0, ∀ξ > 0.

5. Results

Theorem 1. Suppose that (B.1), (B.2), (C.1), (C.2) and (C.3) holds. Then the fidis
of the cluster functionals empirical process (Zn(f))f∈F converge to the fidis of a cen-
tered Gaussian process (Z(f))f∈F with covariance function c defined in assumption
(C.3).

The following lemma is a version of the condition (2) in [Segers, 2003], useful to get
an alternative expression of E[f(Yn)|Yn 6= 0] (Proposition 1 below). Moreover, with
this lemma we derive immediately weak convergence of Pf(Yn)|Yn 6=0 to a probability
measure Pf,W in Proposition 2, applying the tools of Segers again and part of the
proof of Lemma 2.5 in [Drees & Rootzén, 2010]. Finally, using this propositions we
give an alternative expression to the function c defined in the assumption (C.3). Such
expression is (5.31) - Corollary 1.

Lemma 2. If there exists p, q, r > 1 with p−1 + q−1 = 1, such that

lim
l→∞

lim sup
n→∞

τp,n(l)

rnv
p−1+r−1

n

= 0(5.26)

and rnv
1/q
n −→ 0 as n→∞, then

lim
l→∞

lim sup
n→∞

P{Y (l+1,rn)
n,1 6= 0|Xn,1 6= 0} = 0.(5.27)

Remark 7. Note that condition (5.26) is the condition which replaces the condition
(B3) of [Drees & Rootzén, 2010].

Proposition 1. Under assumption (B.1), suppose that there exists p, q, r > 1 (with
p−1 + q−1 = 1) such that (5.26) hold. Then

E [f(Yn)|Yn 6= 0] =
1

θn
E
[
f(Yn,1)− f(Y

(2:rn)
n,1 )|Xn,1 6= 0

]
+ o(1),(5.28)

where o(1) converges to 0 as n → ∞ uniformly for all bounded cluster functionals
f ∈ F , and

θn :=
P{Yn 6= 0}

rnvn
= P{Y (2:rn)

n,1 = 0|Xn,1 6= 0}(1 + o(1)).(5.29)

Consider the following alternative condition:
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(A.3) There is a sequence W = (Wi)i>1 of E-valued random variables such that,
for all k ∈ N, the joint conditional distribution

P(Xn,i,1{Xn,i=0})16i6k|Xn,1 6=0

converges weakly to P(Wi,1{Wi=0}), and for all f ∈ F are a.s. continuous with

respect to the distribution ofW (k) = (W1, . . . ,Wk) andW (2:k) = (W2, . . . ,Wk)
for all k, that is,

P{W (2:k) ∈ Df,k−1,Wi = 0, ∀i > k} = P{W (k) ∈ Df,k,Wi = 0, ∀i > k} = 0

where we denote by Df,k the set of discontinuities of f |Ek .

Remark 8. The existence of such sequence W is guaranteed in particular from
Theorem 2 in [Segers, 2003] with E = R and the normalization (1.1). There, Segers
has shown that if

P((Xn,i)16i6k|X1>un) −→
n→∞

− logGk,

where Gk is some k−dimensional extreme value distribution for all k ∈ N, then there
exists such sequence “tail chain” W = (Wi)i∈N such that

P((Xn,i,1{Xn,i=0})16i6k|X1>un)
w−→

n→∞
P(Wi,1{Wi=0})16i6k ,(5.30)

for all k ∈ N.

Proposition 2. Suppose that (B.1), (A.3) are satisfied and that there exist p, q, r > 1
(with p−1 + q−1 = 1) such that (5.26) hold.
Then

mW := sup{i > 1 : Wi 6= 0} <∞,
θn −→

n→∞
θ := P{Wi = 0,∀i > 2} = P{mW = 1} > 0,

Pf(Yn)|Yn 6=0
w−→

n→∞

1

θ

(
P{f(W ) ∈ ·} − P{f(W (2:∞)) ∈ ·,mW > 2}

)
.

Corollary 1. Suppose that

F = {f |(f(Yn)2)n∈N is uniformly integrable under P (·)/rnvn}.
Assume that (B.2) and Proposition 2’s hypothesis hold. If moreover the assumptions
(C.1) and (C.3) are satisfied then the fidis of the cluster functionals empirical pro-
cess (Zn(f))f∈F converge to the fidis of a centered Gaussian process (Z(f))f∈F with
covariance function c defined by

c(f, g) = E
[
(fg)(W )− (fg)(W (2:∞))

]
.(5.31)

There are many cases in which ‖f‖∞ = supx∈E∪ |f(x)| <∞, for all f ∈ F . Under
this condition, it is clear that the conditions (C.1) and C.2) are satisfied. Therefore,
it is important to note the following corollary.
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Corollary 2. Suppose that (B.2) and Proposition 2’s hypothesis are satisfied. Then,
if ‖f‖∞ = supx∈E∪ |f(x)| < ∞ for all f ∈ F , the fidis of the cluster functionals
empirical process (Zn(f))f∈F converges to the fidis of a centered Gaussian process
(Z(f))f∈F with covariance function c defined by (5.31).

Theorem 2. Suppose that (B.1) and (B.2) hold and that (T.1)-(T.4) are satisfied.
Then the empirical process (Zn)n∈N is asymptotically tight in `∞(F). Moreover, if
the assumptions (C.1)-(C.3) hold, then Zn converges to a centered Gaussian process
Z with covariance function c in (C.3).

Theorem 3. Suppose that (B.1) and (B.2) hold and that (T.1), (T.2), (T.3), (T.4’)
and (T.5) are satisfied. Then the empirical process (Zn)n∈N is asymptotically equicon-
tinuous. Moreover if the assumptions (C.1)-(C.3) hold, then Zn converges to a cen-
tered Gaussian process Z with covariance function c in (C.3).

Application 4 (Blocks estimator of the extremal index). Let (Xi)i∈N be a real
stationary time series with distribution function F . Now consider the index defined
in (5.29) with the extreme normalization (1.1) and un := F←(1−vnt), for all t ∈ [0, 1],
i.e.

θn,t :=
P{Yn 6= 0}
rnvnt

=
P{max16i6rn Xi > un}

rnvnt
, with t ∈ [0, 1].(5.32)

From Proposition 2, if (B.1) is satisfied and if there exist p, q, r > 1 (with p−1+q−1 =
1)) such that (5.26) hold, then there is a number (extremal index ) θ ∈ (0, 1] such
that

θn,t −→
n→∞

θ uniformly for t ∈ [0, 1].(5.33)

Given the convergence (5.33), Drees has suggested in his paper [Drees, 2011] to es-
timate θ replacing the unknown probability P{max16i6rn Xi > un} and the unknown
expectation rnvnt = E [

∑rn
i=1 1{Xi > un}] by a empirical expression for θn,t:

θ̂n,t :=

∑mn
j=1 1{max(j−1)rn<i6jrn Xi > un}∑mn
j=1

∑jrn
i=(j−1)rn+1 1{Xi > un}

,(5.34)

where mn = [n/rn] such that 1 � rn � v−1n � n but nvn −→ ∞. Thus, such
estimator (5.34) (called blocks estimator of the extremal index) can be expressed in
terms of two empirical processes of cluster functionals (Zn(ft), Zn(gt))06t61 defined
in (2.10). For this, suppose without loss of generality that the random variables
(Xi)16i6n are uniformly distributed on [0, 1] (otherwise, just consider the transfor-
mation Ui = F (Xi), 1 6 i 6 n, where F is the distribution function of X1, see
[Drees, 2011]). Then, with the normalization (1.1) such that an = vn = 1 − un and
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the blocks (Yn,j)16j6mn defined in (2.8), we have that

θ̂n,t =
m−1n

∑mn
j=1 ft(Yn,j)

m−1n
∑mn

j=1 gt(Yn,j)
=

Eft(Yn,1) + (nvn)1/2m−1n Zn(ft)

Egt(Yn,1) + (nvn)1/2m−1n Zn(gt)
,(5.35)

where

ft(x1, . . . , xr) := 1{max
16i6r

xi > 1− t}(5.36)

gt(x1, . . . , xr) :=
r∑
i=1

1{xi > 1− t}.(5.37)

For this particular case, we consider the following assumptions:

(C.3.1) (rnvn)−1Cov(gs(Yn), gt(Yn)) −→ cg(s, t), for all 0 6 s, t 6 1.
(C.3.2) (rnvn)−1Cov(fs(Yn), gt(Yn)) −→ cfg(s, t), for all 0 6 s, t 6 1.

(C.4) For some bounded function h : (0, 1] −→ R such that limt→0 h(t) = 0

(rnvn)−1E (fs(Yn,1)− ft(Yn,1))2 6 h(t− s), ∀0 6 s < t 6 1,

for all n sufficiently large.

The following are a slight variation of the first two results of [Drees, 2011], in the
sense that we replace the β-mixing condition with τ -dependence condition. The rest
of the results of such paper also are true if we change the assumptions (C1) and (C2)
for our assumptions (B.1) and (B.2). However, those results will not develop here
because it is not the aim of this work.

Proposition 3.

(3.1) Suppose that τ1,n(ln) = o(r−1n ) where ln, rn are such that (B.1) is satisfied.

Then (Zn(ft))06t61 converges weakly to Zf := (
√
θBt)06t61, where B denote

a standard Brownian motion.
(3.2) If additionally (C.3.1) and (C.4) are satisfied and rn = o(

√
nvn), then the

sequence of processes (Zn(gt))06t61 converges weakly to a centered Gaussian
process (Zg(t))06t61 with covariance function cg.

(3.3) Under all the hypothesis of (3.1) and (3.2), if moreover (C.3.2) holds, then
(Zn(ft), Zn(gt))06t61 converge weakly to (Zf (t), Zg(t))06t61 with

Cov(Zf (s), Zf (t)) = θ(s ∧ t),
Cov(Zg(s), Zg(t)) = cg(s, t),

Cov(Zf (s), Zg(t)) = cfg(s, t), 0 6 s, t 6 1.(5.38)

Using the same argument in Remark 8, we can find explicit expressions for the
covariance functions cg and cfg as functions of the “tail chains” of (Xi)i∈N. This is, if
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for every k ∈ N the distribution function of (X1, . . . , , Xk) belongs to the domain of
attraction of an extreme-value distribution, then there exist a sequence W = (Wi)i∈N
such that (5.30) hold. In such case:

cg(s, t) = s ∧ t+
∞∑
i=1

(P{W1 > 1− s,Wi+1 > 1− t}+ P{W1 > 1− t,Wi+1 > 1− s})

cfg(s, t) =

 P{W1 > 1− t,maxj>1Wj > 1− s}
+
∑∞

i=1 P{W1 > 1− s,Wi+1 > 1− t,maxj>2Wj 6 1− s}, s < t,
t s > t.

Corollary 3. Under Proposition 3 - (3.3)’s assumptions,

(
√
nvnt(θ̂n,t − θn,t))0<t61

w−→
n→∞

Z := Zf − θZg,(5.39)

where Z is a Gaussian process such that EZ(t) = 0 and

Cov(Z(s), Z(t)) = θ(s ∧ t− cfg(s, t)− cfg(t, s) + θ2cg(s, t)).(5.40)

6. Examples and Simulations

6.1. AR(1)-process with the functional “number of excesses over x”. We
consider the AR(1)-process (1.6) where b > 2 is an integer, (ξi)i∈N are i.i.d. and
uniformly distributed on the set U(b) := {0, 1, . . . , b− 1}.
It is clear that X0 is uniformly distributed on [0, 1]. Moreover we define the nor-
malized random variables (Xn,i)16i6n,n∈N as in eqn. (1.4) with an = vn = 1 − un.
We set (x1, . . . , xd) 6 (y1, . . . , yd) if and only if xi 6 yi, for all i = 1, . . . , d in case
x, y ∈ [0, 1]d. Then

P{Xn,1 > x|Xn,1 6= 0}

=
1

bdv̄n

∑
j1,...,jd∈U(b)

(
max
i=1,...,d

{
1− bi +

i∑
s=1

bs−1js + bivn(1− xi)

}
+

∧ 1

)
−→
n→∞

max
i=1,...,d

{bi−d(1− xi)},(6.41)

where v̄n := P{Xn,1 6= 0} ∼ vn = P{X1 > un} −→ 0.
Consider F the family of cluster functionals f as in Example (2.1.2) i.e.

F =
{
fx, x ∈ [0, 1]d

}
, with fx(x1, . . . , xr) =

r∑
i=1

1{xi > x}(6.42)
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For this case, we obtain the covariance function c of (C.3):

c(x, y) = min

(
max
k=1,...,d

{bk(1− xk)}, max
k=1,...,d

{bk(1− yk)}
)

+
∞∑
i=1

Hb,i(x, y) +
∞∑
i=1

Hb,i(y, x),(6.43)

where, for i > d

Hb,i(x, y) :=
1

bi
min

(
max
k=1...,d

{bk(1− xk)}, max
k=1,...,d

{bk+i(1− yk)}
)

(6.44)

and for 1 6 i < d,

Hb,i(x, y)

:=
1

bi
min

(
max
k=1...,i

{bk(1− xk)}, max
k=i+1,...,d

{bk min(1− xk, 1− yk)}, max
k=d−i,...,d

{bk+i(1− yk)}
)

Conditions (C.1), (C.2), (T.1) - (T.4) hold for uniformly distributed random vari-
ables and for the same family F , see page 2177 and 2178 in [Drees & Rootzén, 2010].

Thus, under assumption (B.1), setting rn such that b−2rn = o(vn) (or b−rn = O(vn)
(see eqn. (3.18) and Application 1), then the empirical process (Zn(x))x∈[0,1]d defined
as:

Zn(x) :=
1
√
nvn

rnmn∑
i=1

(1{Xn,i > x} − P{Xn,i > x})

∼ 1
√
nvn

n∑
i=1

(1{Xn,i > x} − P{Xn,i > x})(6.45)

converges to a centered Gaussian process Z with covariance function (6.43).

6.2. Simulation study. The experiment is to estimate the extremal index θ through
the blocks estimator of the extremal index (5.35).

Let us consider the AR(1)-process (1.6). Here, as X0 is uniformly distributed on

[0, 1] and Xi = X0

bi
+
∑i

s=1
ξs

bi−s+1 for all i > 1, we obtain a theoretic expression for
the index (5.32) with un = 1− vnt for t ∈ (0, 1]:

θn,t =
1

brnrnvnt

∑
j1,...,jrn∈U(b)

min

(
max

i=1,...,rn

{
1− bi(1− vnt) +

i∑
s=1

bs−1js

}
+

, 1

)
,

(6.46)

which converges to some θ = θ(b) ∈ (0, 1) if (B.1) is satisfied with b−2ln = o(rnv
β
n),

for some β ∈ [1, 3].
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Now, we simulate AR(1)−processes (1.6) for b = 2, 3 and their blocks estimators
(5.35) respective with the normalization (1.1) and an = vn = 1 − un to make the
comparison of the results estimated with the theoretic model (6.46).

To simulate the blocks estimators, we made N = 60 sequences of length n =
10000 with vn = n−1/2 and rn = [log(n)]. In Figure 1 we showed a polygonal curve
(t, θn=10000,t)t=0.1,0.2,...,1 (blue curve) of (t, θn=10000,t)06t61 and a mean polygonal curve

(t, θ̂n=10000,t)t=0.1,0.2,...,1 (black curve) of (t, θ̂n=10000,t)t=06t1. Moreover, the confidence

intervals It of θ̂t with a confidence level 1− α = 0.95 (red curves).
As expected, the estimated value through the blocks estimator is quite close to the

index theoretical (6.46), with n = 104. The numerical results are shown in Tables 1
and 2, for the cases b = 2 and b = 3, respectively.
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Figure 1. Extremal index for the AR(1)-input

Left: θn=10000,t is the blue curve, θ̂n=10000,t is the black curve and the confidence
intervals It = (CIi(t), CIs(t)) are the red curves, for the AR(1)-input (1.6) with

b = 2. Right: the same situation but with b = 3

t 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θn,t 0.555 0.555 0.555 0.555 0.555 0.555 0.554 0.554 0.554

θ̂n,t 0.575 0.574 0.565 0.564 0.562 0.559 0.560 0.559 0.559
CIs 0.598 0.593 0.580 0.577 0.574 0.570 0.570 0.568 0.567
CIi 0.553 0.556 0.550 0.551 0.550 0.548 0.551 0.550 0.549
Table 1. Comparison between the blocks estimation and the theo-
retical approximation (6.46), for the AR(1)-input with b = 2 and n =
104.

Remark 9. In June 2015 at the Workshop “Mathematical Foundations of Heavy
Tailed Analysis” in Copenhagen, Philippe Soulier has detailed calculations of θ for
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t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θn,t 0.703 0.703 0.702 0.702 0.701 0.700 0.700 0.699 0.698 0.697

θ̂n,t 0.724 0.707 0.703 0.704 0.700 0.700 0.698 0.700 0.698 0.697
CIs 0.754 0.725 0.718 0.717 0.712 0.711 0.708 0.711 0.708 0.706
CIi 0.694 0.689 0.688 0.690 0.687 0.688 0.687 0.690 0.688 0.688

Table 2. Comparison between the blocks estimation and the theo-
retical approximation (6.46), for the AR(1)-input with b = 3 and n =
104

AR(1)-processes: Xi = b−1Xi−1 + Zi with b > 1 under the assumption that the
innovations (Zi)i∈N are i.i.d. regularly varying with index α > 1, RV (α). In this
case,

θ = θ(b, α) = 1− 1

bα
.(6.47)

However, note that the AR(1)-process (1.6) has innovations Zi =
ξi
b

regularly varying

with index α = 1. Thus we can not use the approximation (6.47) in this case.
Naturally one can consider an approximation α −→ 1+, then θ(2, 1) = 1/2 and
θ(3, 1) = 2/3 for the AR(1)-process (1.6) with b = 2 and b = 3, respectively. But
those results are not comparable with our results, since for n sufficiently large (n =
106), the theoretical value (6.46) is θn,t ≈ θ(b), where θ(2) = 0.5384 and θ(3) =
0.6953. Moreover, note that θ(2, 1) and θ(3, 1) are outside the confidence region of

the blocks estimator θ̂n=104,t (see Tables 1 and 2 for b = 2 and b = 3, respectively).

7. Proofs

Proof of Example 3.1. Since the r.v’s (Xi)i>1 and (X ′i)i>1 have the same distributions
the (Xn,i)16i6n and (X ′n,i)16i6n also have the same distributions. Moreover the r.v’s
(X ′n,i)16i6n are independent on M0.
From Lemma 3 in [Dedecker & Prieur, 2004a] we get:

τ1(M0, (Xn,j1 , Xn,j2 , . . . , Xn,jl)) 6
l∑

i=1

∥∥Xn,ji −X ′n,ji
∥∥
1

6 l∆1,n(k),(7.48)

for k < j1 < j2 < · · · < jl ≤ n.
The rest of the proof follows from the definition of τ1,n. �
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Proof of (3.16): Define

X ′n,i :=

((
X ′i − un
an

)
+

,

(
X ′i+1 − un

an

)
+

, . . . ,

(
X ′i+d−1 − un

an

)
+

)
,(7.49)

where X ′i = H(ξi, ξi−1, . . . , ξ1, ξ
′
0, ξ
′
−1, . . .). Recall that the r.v’s (X ′n,i)16i6n,n∈N are

distributed as (Xn,i)16i6n,n∈N and independent of M0: hence from Lemma 3 in
[Dedecker & Prieur, 2004a]), for k < j1 < j2 < . . . < jl 6 n we obtain:

(7.50) τ1(M0, (Xn,j1 , . . . , Xn,jl)) 6
l∑

i=1

∥∥Xn,ji −X ′n,ji
∥∥
1

=
1

an

l∑
i=1

∥∥∥∥∥
d∑
j=1

(
(Xji+j−1 − un)+ − (X ′ji+j−1 − un)+

)
ej

∥∥∥∥∥
1

6
1

an

l∑
i=1

d∑
j=1

‖(Xji+j−1 − un)+ − (X ′ji+j−1 − un)+‖1

6
1

an

l∑
i=1

d∑
j=1

(
E|Xji+j−1 −X ′ji+j−1|1{Xji+j−1 > un, X

′
ji+j−1 > un}

+ E|Xji+j−1 − un|1{Xji+j−1 > un, X
′
ji+j−1 6 un}

+ E|X ′ji+j−1 − un|1{Xji+j−1 6 un, X
′
ji+j−1 > un}

)
.

Note that:

(7.51) E|Xji+j−1 −X ′ji+j−1|1{Xji+j−1 > un, X
′
ji+j−1 > un}

6 ‖Xji+j−1 −X ′ji+j−1‖pP
1/q{Xji+j−1 > un, X

′
ji+j−1 > un}

6 ‖Xji+j−1 −X ′ji+j−1‖pv
1/q
n 6 δp,kv

1/q
n ,

for some p, q ∈ [1,∞] such that p−1 + q−1 = 1. On the other hand,

(7.52) E|Xji+j−1 − un|1{Xji+j−1 > un, X
′
ji+j−1 6 un}

6 E|Xji+j−1 − un|1{un < Xji+j−1 6 un + δ∞,ji+j−1}
6 δ∞,ji+j−1P{0 < Xji+j−1 − un 6 δ∞,ji+j−1}

6 δ∞,kP{0 < X0 − un 6 δ∞,k}.
Similarly, we have that

(7.53) E|X ′ji+j−1 − un|1{Xji+j−1 6 un, X
′
ji+j−1 > un}

6 δ∞,kP{0 < X0 − un 6 δ∞,k}
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Therefore, (7.50) is bounded by

dl

an

(
δp,kv

1/q
n + 2δ∞,kP{0 < X0 − un 6 δ∞,k}

)
.(7.54)

Finally, applying the definition we have that τ1,n(k) 6 ∆̃n(k). �

Lemma 3 (Coupling). Suppose that the random variables (Xn,i)16i6n are such that

E (‖Xn,1‖|Xn,1 6= 0) <∞.

We consider together even and odd block sizes, by using k = 0 or 1 according to the
parity. Assume that for each j ∈ {1, . . . , [mn/2]} there is a random variable δk,j uni-
formly distributed on [0, 1]rn and independent of Mk

n,j−1 = σ(Yn,2−k, . . . , Yn,2(j−1)−k))

and σ(Yn,2j−k). Then there exists a random block Ẏn,2j−k measurable with respect to
Mk

n,j−1∨σ(Yn,2j−k)∨σ(δk,j), independent ofMk
n,j−1, distributed as Yn,2j−k, and such

that ∥∥∥E(drn(Yn,2j−k, Ẏn,2j−k)
)∣∣∣Mk

n,j−1

∥∥∥
p
6 rnτp,n(rn),(7.55)

where δr((x1, . . . , xr), (y1, . . . , yr)) =
∑r

i=1 ‖xi − yi‖.
In particular, ifMk

n,j−1 = σ(Ẏn,2−k, . . . , Ẏn,2(j−1)−k) then the blocks (Ẏn,2j−k)16j6[mn/2]
are independent.

Proof: We set here k = 0 (for even block sizes) since the steps are similar if k = 1.
If j ∈ {1, 2, . . . , [mn/2]} denote Aj = {(2j − 1)rn + 1, . . . , 2jrn}. Assume that for
each i ∈ Aj there is a random variable δi uniformly distributed on [0, 1] independent
ofM0

n,j−1 with σ(Yn,2j) ⊃ σ(Xn,i) (without loss of generality, we can assume that the
variables (δi)i∈Aj are independent). From [Dedecker et al., 2007]’s Lemma 5.3, there

exists a random variable Ẋn,i measurable with respect to M0
n,j−1 ∨ σ(Xn,i) ∨ σ(δi)

independent of M0
n,j−1 distributed as Xn,i and such that

τp(M0
n,j−1, Xn,i) =

∥∥∥E(‖Xn,i − Ẋn,i‖
∣∣M0

n,j−1)
∥∥∥
p
.(7.56)

Set Ẏn,2j = (Ẋn,(2j−1)rn+1, . . . , Ẋ2jrn) and δ0,j = (δn,(2j−1)rn+1, . . . , δ2jrn) then the ran-

dom block Ẏn,2j is measurable with respect toM0
n,j−1∨σ(Yn,2j)∨σ(δ0,j) independent
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of M0
n,j−1 and distributed as Yn,2j; moreover:

(7.57)
∥∥∥E(drn

(
Yn,2j, Ẏn,2j

) ∣∣M0
n,j−1)

∥∥∥
p

6
rn∑
i=1

∥∥∥E(‖Xn,(2j−1)rn+i − Ẋn,(2j−1)rn+i‖
∣∣M0

n,j−1)
∥∥∥
p

=
rn∑
i=1

τp(M0
nj−1, Xn,(2j−1)rn+i)

6
rn∑
i=1

τp(M0
nj−1, Xn,(2j−1)rn+1)

≤ rnτp,n(rn). �

Lemma 4 (Coupling under τ−weakly dependence: the sub-blocks). Suppose that
E (‖Xn,1‖|Xn,1 6= 0) <∞ for 1 6 i 6 n. Moreover assume that, for j ∈ {2, . . . ,mn},
there exists a random variable δj uniformly distributed on [0, 1]rn−ln independent of

the σ−algebrasMn,j−1 = σ(Y
(rn−ln)
n,1 , . . . , Y

(rn−ln)
n,j−1 ) and σ(Y

(rn−ln)
n,j ). Then there exists

a random block Ẏ
(rn−ln)
n,j , measurable with respect to Mn,j−1 ∨ σ(Y

(rn−ln)
n,j ) ∨ σ(δj),

independent of Mn,j−1 and distributed as Y
(rn−ln)
n,j such that

∥∥∥E(drn−ln(Y
(rn−ln)
n,j , Ẏ

(rn−ln)
n,j )

)∣∣∣Mn,j−1

∥∥∥
p
6 rnτp,n(ln).(7.58)

If Mn,j−1 = σ(Ẏ
(rn−ln)
n,1 , . . . , Ẏ

(rn−ln)
n,j−1 ) then the blocks (Ẏ

(rn−ln)
n,j )16j6mn are indepen-

dent.

Proof. The same argument previous proof. However note that the sub-blocks

(Y
(rn−ln)
n,j )j=1,...,mn are separated by ln variables. �

Proof of Theorem 1. Let (Yn,j)16j6mn be the blocks built from (Xn,i)16i6n. For

k ∈ {0, 1}, we consider the independent blocks (Ẏn,2j−k)16j6[mn/2] coupled to the
original blocks (Yn,2j−k)16j6[mn/2], from Lemma 3. Therefore, if we define ∆∗n,j :=

f(Ẏn,j) − f(Ẏ
(rn−ln)
n,j ), for j = 1, . . . ,mn, we have that ∆∗n,j(f)

D
= ∆n,j(f)

D
= ∆n(f),

for each j, where ∆n,j(f) := f(Yn,j) − f(Y
(rn−ln)
n,j ) and ∆n(f) is defined in (4.24).

Now, if we consider the assumption (C.1), we can apply [Petrov, 1975]’s Theorem 1
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(Section IX.1) to the i.i.d.r.v’s Xn,j := (nvn)−1/2∆∗n,j(f), so

DŻ(k)
n (f) :=

1
√
nvn

[mn/2]∑
j=1

(
∆∗n,2j−k(f)− E∆∗n,2j−k(f)

)
= oP (1)(7.59)

for k = 0, 1. In consequence,

DZn(f) :=
1
√
nvn

mn∑
j=1

(∆n,j(f)− E∆n,j(f)) = oP (1)(7.60)

On the other hand, by Lemma 4, we have that

BZn(f) :=
1
√
nvn

mn∑
j=1

(
f(Y

(rn−ln)
n,j )− Ef(Y

(rn−ln)
n,j )

)
(7.61)

converge weakly in fidis if, and only if

BŻn(f) :=
1
√
nvn

mn∑
j=1

(
f(Ẏ

(rn−ln)
n,j )− Ef(Ẏ

(rn−ln)
n,j )

)
(7.62)

converge weakly in fidis (and in this case the limit distributions are the same). The
latter holds because BŻn(f) = Żn(f)−DŻn(f) and from the assumptions (C.2) and
(C.3).

Finally, as Zn(f) = BZn(f) +DZn(f) ∀f ∈ F , we get the result. �

Proof of Theorem 2. We consider blocks Yn,1, Yn,2, . . . , Yn,mn . Using Lemma 3,

for k ∈ {0, 1} we build independent blocks (Ẏn,2j−k)16j6[mn/2] coupled to the original

blocks (Yn,2j−k)16j6[mn/2]; that is, Yn,2j−k
D
= Ẏn,2j−k and Eδrn(Yn,2j−k, Ẏn,2j−k)→ 0, as

n→∞ for each j = 1, . . . , [mn/2] and k = 0, 1. Thus Zn is asymptotically tight iff

Ż(k)
n (f) :=

1
√
nvn

[mn/2]∑
j=1

(
f(Ẏn,2j−k)− Ef(Ẏn,2j−k)

)
(7.63)

is asymptotically tight for k = 0, 1. The latter is true due to Theorem 2.11.9 in
[Van Der Vaart & Wellner, 1996] by setting Znj(f) = f(Yn,j) and [mn/2] instead of
mn. For the remaining assertion we use Theorem 1. �

Proof of Theorem 3. We follow the same lines as in the previous proof. From
the triangle inequality Zn is asymptotically equicontinuous if Żk

n from eqn. (7.63)
is asymptotically equicontinuous for each k ∈ {0, 1}; this holds true from Theorem
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2.11.1 in [Van Der Vaart & Wellner, 1996].
The uniform convergence to a Gaussian process now follows from Theorem 1. �

Proof of Lemma 2. Use the following chain of inequalities:

P{Y (l+1:rn)
n 6= 0|Xn,1 6= 0} = v−1n P{Y (l+1:rn)

n 6= 0, Xn,1 6= 0}

= v−1n

∫
{Xn,1 6=0}

P{Y (l+1:rn)
n 6= 0|σ(Xn,1)}dP

= v−1n

∫
{Xn,1 6=0}

E[1{Y (l+1:rn)
n 6= 0}|σ(Xn,1)]dP

= v−1n lim
a−→0

∫
{Xn,1 6=0}

E
[
ga(Xn,l+1, . . . , Xn,rn)

(rn − l)a
|σ(Xn,1)

]
dP

6 lim
a−→∞

1

(rn − l)avn
‖E[ga(Xn,l+1, . . . , Xn,rn)|σ(Xn,1)]‖p‖1{Xn,1 6= 0}‖q

6 lim
a−→∞

1

(rn − l)vp
−1

n a
‖E[ga(Xn,l+1, . . . , Xn,rn)|σ(Xn,1)]− E[ga(Xn,l+1, . . . , Xn,rn)]‖p

+ lim
a−→0

1

(rn − l)vp
−1

n a
E|ga(Xn,l+1, . . . , Xn,rn)|

6 lim
a−→0

τp(σ(Xn,1), (Xn,l+1, . . . , Xn,rn))

(rn − l)vp
−1

n a
+

P{Y (l+1:rn)
n 6= 0}
vp
−1

n

6
τp,n(l)

(rn − l)vp
−1

n a
+ (rn − l)v1/qn ,

where p−1 + q−1 = 1 and
ga(xl+1, . . . , xrn)

(rn − l)a
is a Lipschitz function that approximates

to 1{(xl+1, . . . , xrn) 6= 0}. Therefore setting a = vr
−1

n then the result will follow from
assumption (5.26). �

Proof of Proposition 1. Use only Lemma 2 and the remaining steps are those in
[Drees & Rootzén, 2010], Lemma 2.5. �

Proof of Proposition 2. Follows the lines of the proof of Proposition 1. �
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Proof of Proposition 3. The steps are the same that in the proof of Theorem 2.1
in [Drees, 2011], but replacing the assumptions (C1) and (C2) of his paper by our
assumptions (B.1) and (B.2). �

Proof of Corollary 3. We follow the same lines as in the previous proof replacing the
assumptions (C1) and (C2) of [Drees, 2011] by our assumptions (B.1) and (B.2) in
the proof of Corollary 2.3 of the previous paper. �

Proof of (6.41). Let (Xi)i>0 be the AR(1)-process (1.6). Note that for each i ∈ N

Xi =
X0

bi
+

i∑
s=1

ξs
bi−s+1

(7.64)

If n is sufficiently large such that bdvn < 1, then for x ∈ [0, 1]d:

(7.65) P{Xn,1 > x,Xn,1 6= 0} = P{Xi > anxi + un, for some i = 1, . . . , d}

= P

{
X0 > bi(anxi + un)−

i∑
s=1

bs−1ξs, for some i = 1, . . . , d

}

= P

{
X0 > min

i=1,...,d

{
bi(anxi + un)−

i∑
s=1

bs−1ξs

}}

=
∑

j1,...,jd∈U(b)

P

{
X0 > min

i=1,...,d

{
bi(anxi + un)−

i∑
s=1

bs−1js

}
, (ξ1, . . . , ξd) = (j1, . . . , jd)

}

=
1

bd

∑
j1,...,jd∈U(b)

P

{
X0 > min

i=1,...,d

{
bi(anxi + un)−

i∑
s=1

bs−1js

}}

=
1

bd

∑
j1,...,jd∈U(b)

(
max
i=1,...,d

{
1− bi +

i∑
s=1

bs−1js + bivn(1− xi)

}
+

∧ 1

)

=
1

bd
max
i=1,...,d

{
bivn(1− xi)

}
,

since µb(j1, . . . , jd; i) := 1− bi +
∑i

s=1 b
s−1js 6 −1 for all (j1, . . . , jd) ∈ Ud(b) \ {(b−

1, . . . , b− 1)} and µb(b− 1, b− 1, . . . , b− 1) = 0.
Therefore,

P{Xn,1 > x|Xn,1 6= 0} −→
n→∞

max
i=1,...,d

{bi−d(1− xi)}.(7.66)

�



EMPIRICAL CLT FOR CLUSTER FUNCTIONALS UNDER WEAK DEPENDENCE∗ 27

Proof of (6.43). Let x, y ∈ [0, 1]d. Then as before for i > 1, if n is sufficiently large
such that bi+dvn < 1, then we have:

(7.67) P{Xn,1 > x,Xn,i+1 > y}
= P

{
Xk > anxk + un, Xi+l > anyl + un, for some (k, j) ∈ {1, . . . , d}2

}
= P

{
X0 > min

k=1,...,d

{
bk(anxk + un)−

k∑
s=1

bs−1ξs

}
,

Xi > min
l=1,...,d

{
bl(anyl + un)−

l∑
s=1

bs−1ξs+i

}}

=
∑

j1,...,jd∈U(b)

ji+1,...,ji+d∈U(b)

P

{
X0 > min

k=1,...,d

{
bk(anxk + un)−

k∑
s=1

bs−1js

}
,

Xi > min
l=1,...,d

{
bl(anyl + un)−

l∑
s=1

bs−1js+i

}
,

(ξ1, . . . , ξd, ξi+1, . . . , ξi+d) = (j1, . . . , jd, ji+1, . . . , ji+d)}

=
1

bd

∑
j1,...,jd∈U(b)

ji+1,...,ji+d∈U(b)

P

{
X0 > min

k=1,...,d

{
bk(anxk + un)−

k∑
s=1

bs−1js

}
,

Xi > min
l=1,...,d

{
bl(anyl + un)−

l∑
s=1

bs−1js+i

}
, (ξ1, . . . , ξd) = (j1, . . . , jd)

}

=
1

bd

∑
j1,...,jd∈U(b)

ji+1,...,ji+d∈U(b)

P
{
X0 > 1− max

k=1,...,d

{
µb(j1, . . . , jd; k) + bkvn(1− xk)

}
+
∧ 1,

Xi > 1− max
l=1,...,d

{
µb(ji+1,...,ji+d) + blvn(1− yl)

}
+
∧ 1, (ξ1, . . . , ξd) = (j1, . . . , jd)

}
=

1

bd
P
{
X0 > 1− max

k=1,...,d

{
bkvn(1− xk)

}
,

Xi > 1− max
l=1,...,d

{
blvn(1− yl)

}
, ξ1 = . . . = ξd = b− 1

}
since µb(j1, . . . , jd; i) := 1− bi +

∑i
s=1 b

s−1js 6 −1 for all (j1, . . . , jd) ∈ Ud(b) \ {(b−
1, . . . , b− 1)} and µb(b− 1, b− 1, . . . , b− 1) = 0.
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Moreover, note that if i > d

(7.68) P{Xn,1 > x,Xn,i+1 > y} =
1

bd
P
{
X0 > 1− max

k=1,...,d

{
bkvn(1− xk)

}
,

Xi > 1− max
l=1,...,d

{
blvn(1− yl)

}
, ξ1 = . . . = ξd = b− 1

}
=

1

bd
P
{
X0 > 1− max

k=1,...,d

{
bkvn(1− xk)

}
,

X0 > bi − bi max
l=1,...,d

{
blvn(1− yl)

}
+ 1− bd −

i∑
s=d+1

bs−1ξs

}

=
1

bd

∑
jd+1,...,ji

∈U(b)

P
{
X0 > 1− max

k=1,...,d

{
bkvn(1− xk)

}
,

X0 > bi − bi max
l=1,...,d

{
blvn(1− yl)

}
+ 1− bd −

i∑
s=d+1

bs−1js, (ξd+1, . . . , ξi) = (jd+1, . . . , ji)

}

=
1

bi

∑
jd+1,...,ji

∈U(b)

P
{
X0 > 1− max

k=1,...,d

{
bkvn(1− xk)

}
,

X0 > bi − bi max
l=1,...,d

{
blvn(1− yl)

}
+ 1− bd −

i∑
s=d+1

bs−1js

}

=
1

bi

∑
jd+1,...,ji

∈U(b)

min

(
max
k=1,...,d

{
bkvn(1− xk)

}
,

max
l=1,...,d

{
bd +

i∑
s=d+1

bs−1js + bl+ivn(1− yl)− bi
}

+

, 1



=
vn
bi

min

(
max
k=1,...,d

{
bk(1− xk)

}
, max
l=1,...,d

{
bl+i(1− yl)

})
= vnHb,i(x, y)
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Similarly for 1 6 i < d, we obtain that

(7.69) P{Xn,1 > x,Xn,i+1 > y}

=
vn
bi

min

(
max
k=1...,i

{bk(1− xk)}, max
k=i+1,...,d

{bk min(1− xk, 1− yk)}, max
k=d−i,...,d

{bk+i(1− yk)}
)

= vnHb,i(x, y)

From Lemma 5.2 - (iii) in [Drees & Rootzén, 2010], E|f(Yn)| = o(
√
nvn). Thus,

for n sufficiently large:

(7.70)
Cov (fx(Yn), fy(Yn))

rnvn
∼ P{Xn,1 > x,Xn,1 > y}

+
rn−1∑
i=1

(
1− i

rn

)
(P{Xn,1 > x,Xn,i+1 > y}+ P{Xn,1 > y,Xn,i+1 > x})

−→
n→∞

min

(
max
k=1,...,d

{bk(1− xk)}, max
k=1,...,d

{bk(1− yk)}
)

+
∞∑
i=1

(Hb,i(x, y) +Hb,i(y, x)) .

�

Proof of (6.46). The proof is similar to the proof of the expression (6.41). Indeed,

(7.71) P
{

max
16i6rn

Xi > 1− vnt
}

= P {Xi > 1− vnt, for some i = 1, . . . , rn}

= P

{
X0 > bi(1− vnt)−

i∑
s=1

bs−1ξs, for some i = 1, . . . , rn

}

= P

{
X0 > min

16i6rn

{
bi(1− vnt)−

i∑
s=1

bs−1ξs

}}

=
∑

j1,...,jrn∈U(b)

P

{
X0 > min

16i6rn

{
bi(1− vnt)−

i∑
s=1

bs−1ξs

}
, (ξ1, . . . , ξrn) = (j1, . . . , jrn)

}

=
1

brn

∑
j1,...,jrn∈U(b)

P

{
X0 > min

16i6rn

{
bi(1− vnt)−

i∑
s=1

bs−1js

}}

=
1

brn

∑
j1,...,jrn∈U(b)

min

(
max
16i6rn

{
1 +

i∑
s=1

bs−1js − bi(1− vnt)

}
+

, 1

)
.

�
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